Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1635–1641 | Cite as

Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks’ Solution

  • S. Gnanavel
  • S. Ponnusamy
  • L. Mohan
  • R. Radhika
  • C. Muthamizhchelvan
  • K. Ramasubramanian
Article
  • 176 Downloads

Abstract

Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.

Keywords

corrosion diamond carbon electrochemical impedance HFCVD titanium alloys 

References

  1. 1.
    S. Kurtz, Projection of Primary and Revision Hip and Knee Arthoroplasty in Unites State from 2005 to 2030, J. Bone Jt. Surg., 2007, 89, p 780–785Google Scholar
  2. 2.
    S.M. Kurtz, E. Lau, K. Ong, K. Zhao, M. Kelly, and K.J. Bozic, Future Young Patient Demand for Primary and Revision Joint Replacement: National Projections from 2010 to 2030, Clin. Orthop. Relat. Res., 2009, 467, p 2606–2612CrossRefGoogle Scholar
  3. 3.
    M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopedic Implants, Prog. Mater. Sci., 2009, 54, p 397–425CrossRefGoogle Scholar
  4. 4.
    M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 1998, 19, p 1621–1639CrossRefGoogle Scholar
  5. 5.
    Y. Abu-Amer, I. Darwech, and J.C. Clohisy, Aseptic Loosening of Total Joint Replacements: Mechanisms Underlying Osteolysis and Potential Therapies, Arthritis Res. Ther., 2007, 9, p S6CrossRefGoogle Scholar
  6. 6.
    R. Pareta, L. Yang, A. Kothari, S. Sirinrath, X. Xiao, B.W. Sheldon et al., Tailoring Nanocrystalline Diamond Coated on Titanium for Osteoblast Adhesion, J. Biomed. Mater. Res. Part A, 2010, 95, p 129–136CrossRefGoogle Scholar
  7. 7.
    Y. Yan, A. Neville, and D. Dowson, Bio Tribocorrosion of Co Cr Mo Orthopedic Implant Materials—Assessing the Formation and Effect of the Biofilm, Tribol. Int., 2007, 40, p 1492–1499CrossRefGoogle Scholar
  8. 8.
    R. Hauert, Tribology of Diamond-like Carbon Films: Fundamentals and Applications, ed by C. Donnet, A. Erdemir (Springer, New York, 2008) pp. 494–509Google Scholar
  9. 9.
    X. Liu, P.K. Chu, and C. Ding, Surface Nano-functionalization of Biomaterials, Mater. Sci. Eng., 2010, 70(3–6), p 275–302CrossRefGoogle Scholar
  10. 10.
    V. Gopal, M. Chandran, and M.S. Ramachandra, Tribocorrosion and Electrochemical Behaviour of Nanocrystalline Diamond Coated Ti Based Alloys for Orthopaedic Application, Tribol. Int., 2017, 106, p 88–100CrossRefGoogle Scholar
  11. 11.
    S.P. Patterson, R.H. Daffner, and R.A. Gallo, Electrochemical Corrosion of Metal Implants, AJR Am. J. Roentgenol., 2005, 184, p 1219–1222CrossRefGoogle Scholar
  12. 12.
    S.R. Paital and N.B. Dahotre, Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies, Mater. Sci. Eng., 2009, 66, p 1–3CrossRefGoogle Scholar
  13. 13.
    M. Spector, Biomaterial Failure, Orthop. Clin., 1992, 23, p 211–217Google Scholar
  14. 14.
    M. Kaczmare, M.U. Jurczyk, A. Miklaszewski, A. Paszel-Jaworska et al., In Vitro Biocompatibility of Titanium After Plasma Surface Alloying with Boron, Mater. Sci. Eng. C, 2016, 69, p 1240–1247CrossRefGoogle Scholar
  15. 15.
    R. Hauert, A Review of Modified DLC Coatings for Biological Applications, Diamond Relat. Mater., 2003, 12, p 583–589CrossRefGoogle Scholar
  16. 16.
    A. Grill, Tribology of Diamond Like Carbon and Related Materials: An Updated Review, Surf. Coat. Technol., 1997, 94, p 507–513CrossRefGoogle Scholar
  17. 17.
    P. Yang, S.C.H. Kwok, P.K. Chu, Y.X. Leng, J.Y. Chen, J. Wang, and N. Huang, Haemocompatibility of Hydrogenated Amorphous Carbon (a-C:H) Films Synthesized by Plasma Immersion Ion Implantation-Deposition, Nucl. Instrum. Methods Phys. Res. Sect. B, 2003, 206, p 721–725CrossRefGoogle Scholar
  18. 18.
    L.J. Yu, X. Wang, X.H. Wang, and X.H. Liu, Heamo Compatibility of Tetrahedral Amorphous Carbon Film, Surf. Coat. Technol., 2000, 128(129), p 484–488CrossRefGoogle Scholar
  19. 19.
    N. Urdin, P. Francois, M. Moret, K. Unal, J. Krumeich, B.O. Aronsson, and P. Descounts, Hemocompatible Diamond-Like Carbon (DLC) Surfaces, Eur. Cells Mater., 2003, 5, p 17–28CrossRefGoogle Scholar
  20. 20.
    M.I. Jones, I.R. McColl, D.M. Grant, K.G. Parker, and T.L. Parker, Haemocompatibility of DLC and TiC–TiN Interlayers on Titanium, Diamond Relat. Mater., 1999, 8(2–5), p 457–462CrossRefGoogle Scholar
  21. 21.
    S. Linder, W. Pinkowski, and M. Aepfelbacher, Adhesio Cytoskeletal Architecture and Activation Status of Primary Human Macrophages on a Diamond-Like Carbon Coated Surface, Biomaterials, 2002, 23, p 767–773CrossRefGoogle Scholar
  22. 22.
    K. Al Mahmud, M. Varman, M. Kalam, H. Masjuki, H. Mobarak, and N. Zulkifli, Tribological Characteristics of Amorphous Hydrogenated (aC: H) and Tetrahedral (ta-C) Diamond-Like Carbon Coating at Different Test Temperatures in the Presence of Commercial Lubricating Oil, Surf. Coat. Technol., 2014, 245, p 133–147CrossRefGoogle Scholar
  23. 23.
    M. Mohanty, T.V. Anilkumar, P.V. Mohanan, C.V. Muraleedharan, G.S. Bhuvaneshwar, F. Derangere, Y. Sampeur, and R. Suryanarayanan, Long Term Tissue Response to Titanium Coated with Diamond Like Carbon, Biomol. Eng., 2002, 19, p 125–128CrossRefGoogle Scholar
  24. 24.
    D. Sheeja, B.K. Tay, and L.N. Nung, Feasibility of Diamond-Like Carbon Coatings for Orthopedic Applications, Diamond Relat. Mater., 2004, 13(1), p 184–190CrossRefGoogle Scholar
  25. 25.
    S.H. Din, M.A. Shah, and N.A. Sheikh, Effect of CVD-Diamond on the Tribological and Mechanical Performance of Titanium Alloy (Ti6Al4V), Tribol. Ind., 2016, 38(4), p 530–542Google Scholar
  26. 26.
    L. Mohan, P. Dillibabu, P. Kmar, and C. Anandan, Influence of Zirconium Doping on the Growth of Apatite and Corrosion Behavior of DLC-Coated Titanium Alloy Ti-13Nb-13Zr, Surf. Interface Anal., 2013, 45(11–12), p 1785–1791CrossRefGoogle Scholar
  27. 27.
    V. Baranauskas, H.J. Ceragioli, A.C. Peterlevitz, and M. Fontana, Low Residual Stress Diamond Coatings on Titanium, Surf. Coat. Technol., 2005, 200, p 2343–2347CrossRefGoogle Scholar
  28. 28.
    S. Ghosh, D. Choudhury, T. Roy, A.B. Mama, H.H. Masjuki, and B. Pingguan-Murphy, Tribological Investigation of Diamond Like Carbon Coated Micro-dimpled Surface Under Bovine Serum and Osteoarthritis Oriented Synovial Fluid, Sci. Technol. Adv. Mater., 2015, 16, p 3Google Scholar
  29. 29.
    S. Tamilselvi, V. Raman, and N. Rajendran, Electrochemical Impedance Spectroscopic Characterization of Titanium During Alkali Treatment and Apatite Growth in Simulated Body Fluid, Electrochem. Acta, 2007, 52, p 7418–7424CrossRefGoogle Scholar
  30. 30.
    T. Falcade, T.E. Shimitzhauz, O.G. dos Reisb et al., Electrodeposition of Diamond-Like Carbon Films on Titanium Alloy Using Organic Liquids: Corrosion and Wear Resistance, Appl. Surf. Sci., 2012, 263, p 18–24CrossRefGoogle Scholar
  31. 31.
    T.J. Dines, D. Tither, A. Dehbi, and A. Mathews, Raman Spectra of Hard Carbon Films and Hard Carbon Films Containing Secondary Elements, Carbon, 1991, 29, p 225–231CrossRefGoogle Scholar
  32. 32.
    D. Durgalakshmi and M. Chandran, Studies on Corrosion and Wear Behavior of Sub Micrometric Diamond Coated Ti Alloys, Tribol. Int., 2013, 63, p 132–140CrossRefGoogle Scholar
  33. 33.
    B. Ramamoorthy, B.C. Yelldose, and Scires, An Investigation into the Adhesion Strength of Diamond Like Carbon Multilayer Coating (DLC/TiN/Ti/Cu/Ni), IIM Int., 2009, 1, p 179–194CrossRefGoogle Scholar
  34. 34.
    C. Anandan and L. Mohan, Wear and Corrosion Behavior of Oxygen Implanted Biomedical Titanium Alloy Ti-13Nb-13Zr, Appl. Surf. Sci., 2013, 282, p 281–290CrossRefGoogle Scholar
  35. 35.
    M. Metikos-Hukovic and R. Babic, Passivation and Corrosion Behaviours of Cobalt and Cobalt–Chromium–Molybdenum Alloy, Corros. Sci., 2007, 40, p 3570–3579CrossRefGoogle Scholar
  36. 36.
    I. Milosev, T. Kosec, and H.H. Strehblow, XPS and EIS Study of the Passive Film Formed on Orthopaedic Ti-6Al-7Nb Alloy in Hank’s Physiological Solution, Electrochim. Acta, 2008, 53, p 3547–3558CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • S. Gnanavel
    • 1
  • S. Ponnusamy
    • 2
  • L. Mohan
    • 4
  • R. Radhika
    • 3
  • C. Muthamizhchelvan
    • 2
  • K. Ramasubramanian
    • 3
  1. 1.Department of Biomedical EngineeringSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Centre for Materials Science and Nano DevicesSRM Institute of Science and TechnologyChennaiIndia
  3. 3.Nano Functional Materials Technology CentreIndian Institute of Technology MadrasChennaiIndia
  4. 4.Surface Engineering DivisionCSIR-National Aerospace LaboratoriesBangaloreIndia

Personalised recommendations