Effect of Reduced Graphene Oxide Reinforcement on the Wear Characteristics of Electroless Ni-P Coatings

  • T. R. Tamilarasan
  • U. Sanjith
  • R. Rajendran
  • G. Rajagopal
  • J. Sudagar


Electroless composite coatings with various concentrations of reduced graphene oxide (rGO) particles were deposited onto mild steel substrate. The effects of adding rGO particles by varying their concentration from 0 to 100 mg/L on morphology, composition, microhardness, adhesion, wear and friction of the electroless composite coatings were investigated. Among the various parameters that influence the tribological behavior, sliding velocity was varied within a specific range for definite concentrations of rGO to obtain enhanced wear resistance in this study. The micrographs of the worn surfaces and indented spots were examined for the nature of wear mechanism and interfacial adhesion. The wear rate increased with increasing sliding velocity but was relatively stable for coatings with lower concentrations of rGO.


electroless coating indentation microhardness wear 



Authors sincerely thank B.S. Abdur Rahman Crescent Institute of Science & Technology for their financial support.


  1. 1.
    V. Medeliene, V. Stankevic, A. Griguceviciene, A. Selskiene, and G. Bikulcius, The Study of Corrosion and Wear Resistance of Copper Composite Coatings with Inclusion of Carbon Nanomaterials in the Copper Metal Matrix, Mater. Sci., 2011, 17, p 132–139Google Scholar
  2. 2.
    C. Soldano, A. Mahmood, and E. Dujardin, Production, Properties and Potential of Graphene, Carbon, 2010, 48, p 2127–2150CrossRefGoogle Scholar
  3. 3.
    A.K. Geim, Graphene: Status and Prospects, Science, 2009, 324, p 530–1534CrossRefGoogle Scholar
  4. 4.
    M.H. Sadhir, M. Saranya, M. Aravind, A. Srinivasan, A. Siddharthan, and N. Rajendran, Comparison of In Situ and Ex Situ Reduced Graphene Oxide Reinforced Electroless Nickel Phosphorus Nanocomposite Coating, Appl. Surf. Sci., 2014, 320, p 171–176CrossRefGoogle Scholar
  5. 5.
    S. Pei and H.M. Cheng, The Reduction of Graphene Oxide, Carbon, 2012, 50, p 3210–3228CrossRefGoogle Scholar
  6. 6.
    Z. Jia, T. Chen, J. Wang, J. Ni, H. Li, and X. Shao, Synthesis, Characterization and Tribological Properties of Cu/Reduced Graphene Oxide Composites, Tribol. Int., 2015, 88, p 17–24CrossRefGoogle Scholar
  7. 7.
    D. Kuang, L. Xu, L. Liu, W. Hu, and Y. Wu, Graphene–Nickel Composites, Appl. Surf. Sci., 2013, 273, p 484–490CrossRefGoogle Scholar
  8. 8.
    Z. Yang, H. Xu, M.K. Li, Y.L. Shi, Y. Huang, and H.L. Li, Preparation and Properties of Ni/P/Single-Walled Carbon Nanotubes Composite Coatings by Means of Electro-Less Plating, Thin Solid Films, 2004, 466, p 86–91CrossRefGoogle Scholar
  9. 9.
    X.H. Chen, C.S. Chen, H.N. Xiao, H.B. Liu, L.P. Zhou, S.L. Li, and G. Zhang, Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits, Tribol. Int., 2006, 39, p 22–28CrossRefGoogle Scholar
  10. 10.
    J. Sudagar, J. Lian, and W. Sha, Electroless Nickel, Alloy, Composite and Nano Coatings—A Critical Review, J. Alloys Compd., 2013, 571, p 183–204CrossRefGoogle Scholar
  11. 11.
    J.N. Balaraju, T.S. Narayanan, and S.K. Seshadri, Electroless Ni-P Composite Coatings, J. Appl. Electrochem., 2003, 33, p 807–816CrossRefGoogle Scholar
  12. 12.
    J. Sudagar, K. Venkateswarlu, and J. Lian, Dry Sliding Wear Properties of a 7075-T6 Aluminum Alloy Coated with Ni-P (h) in Different Pretreatment Conditions, J. Mater. Eng. Perform., 2010, 19(6), p 810–818CrossRefGoogle Scholar
  13. 13.
    A. Zarebidaki and S.R. Allahkaram, Effect of Surfactant on the Fabrication and Characterization of Ni-P-CNT Composite Coatings, J. Alloys Compd., 2011, 509, p 1836–1840CrossRefGoogle Scholar
  14. 14.
    M. Sarret, C. Muller, and A. Amell, Electroless NiP Micro- and Nano-composite Coatings, Surf. Coat. Technol., 2006, 201, p 389–395CrossRefGoogle Scholar
  15. 15.
    Y. De Hazan, F. Knies, D. Burnat, T. Graule, Y. Yamada-Pittini, C. Aneziris, and M. Kraak, Homogeneous Functional Ni-P/Ceramic Nanocomposite Coatings via Stable Dispersions in Electroless Nickel Electrolytes, J. Colloid Interface Sci., 2012, 365, p 163–171CrossRefGoogle Scholar
  16. 16.
    P. Sahoo and S.K. Das, Tribology of Electroless Nickel Coatings—A Review, Mater. Des., 2011, 32, p 1760–1775CrossRefGoogle Scholar
  17. 17.
    T.R. Tamilarason, R. Rajendran, U. Sanjith, M. Siva shankar, G. Rajagopal, and J. Sudagar, Wear and Scratch Behaviour of Electroless Ni-P-Nano-TiO2: Effect of Surfactants, Wear, 2016, 346, p 148–157CrossRefGoogle Scholar
  18. 18.
    A. Farzaneh, M. Ehteshamzadeh, M. Ghorbani, and J.V. Mehrabani, Investigation and Optimizatis by Taguchi Method, J. Coat. Technol. Res., 2010, 7, p 547–555CrossRefGoogle Scholar
  19. 19.
    M. Abdoli and A.S. Rouhaghdam, Preparation and Characterization of Ni-P/Nanodiamond Coatings: Effects of Surfactants, Diam Relat. Mater., 2013, 31, p 30–37CrossRefGoogle Scholar
  20. 20.
    T.R. Tamilarasan, R. Rajendran, G. Rajagopal, and J. Sudagar, Effect of Surfactants on the Coating Properties and Corrosion Behaviour of Ni-P-Nano-TiO2 Coatings, Surf. Coat. Technol., 2015, 276, p 320–326CrossRefGoogle Scholar
  21. 21.
    N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI, 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds, J. Mater. Process. Technol., 2003, 143, p 481–485CrossRefGoogle Scholar
  22. 22.
    S. Ozkan, G. Hapci, G. Orhan, and K. Kazman, Electrodeposited Ni/SiC Nanocomposite Coatings and Evaluation of Wear and Corrosion Properties, Surf. Coat. Technol., 2013, 232, p 734–741CrossRefGoogle Scholar
  23. 23.
    H. Wu, F. Liu, W. Gong, F. Ye, L. Hao, L.J. Jiang, and S. Han, Preparation of Ni-P-GO Composite Coatings and Its Mechanical Properties, Surf. Coat. Technol., 2015, 272, p 25–32CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • T. R. Tamilarasan
    • 1
  • U. Sanjith
    • 1
  • R. Rajendran
    • 2
  • G. Rajagopal
    • 3
  • J. Sudagar
    • 4
  1. 1.Department of Mechanical Engineering, School of Mechanical SciencesB.S. Abdur Rahman Crescent UniversityVandalur, ChennaiIndia
  2. 2.Department of Automobile EngineeringSRM Institute of Science & TechnologyChennaiIndia
  3. 3.CSIR – Central Electrochemical Research InstituteKaraikudiIndia
  4. 4.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations