Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1927–1935 | Cite as

Synthesis and Tribological Performance of Different Particle-Sized Nickel-Ion-Exchanged α-Zirconium Phosphates

  • Xiaosheng Zhang
  • Hong Xu
  • Jinxiang Dong


Nickel-ion-exchanged α-zirconium phosphate (Ni-α-ZrP) was synthesized by a mild hydrothermal synthesis method. Different raw material ratios (NaF/H3PO4/Ni(CH3COO)2·4H2O) influence the particle size of the Ni-α-ZrP samples. The grain size could be controlled and distributed from 20 to 600 nm. Ni-α-ZrP was evaluated as an additive in lithium grease in a four-ball test. A 3.0 wt.% addition of Ni-α-ZrP to lithium grease yielded maximum non-seizure load values of 1235 N, and the wear scar diameter on the lower balls is 0.42 mm at 294 N. Compared with smaller particles, the addition of Ni-α-ZrP with a larger particle size to grease yields a better load-carrying capacity.


additive manufacturing hydrothermal synthesis lithium grease nickel-ion-exchanged α-zirconium phosphate particle size tribological properties 



This work was financially supported by the Key Program of National Natural Science Foundation of China (Grant No. 21436008), the General Program of National Natural Science Foundation of China (Grant No. 51372162), Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21506145) and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2015021032).


  1. 1.
    J.M. Troup and A. Clearfield, On the Mechanism of Ion Exchange in Zirconium Phosphates. 20. Refinement of the Crystal Structure of α-Zirconium Phosphate, Inorg. Chem., 1977, 16, p 3311–3314CrossRefGoogle Scholar
  2. 2.
    A. Clearfield and K. Demadis, Metal Phosphonate Chemistry: From Synthesis to Applications, Royal Society of Chemistry, London, 2012Google Scholar
  3. 3.
    L. Liu, Z.F. Chen, H.B. Wei, Y. Li, Y.C. Fu, H. Xu, J.P. Li, M.Z. Alexandra, and J.X. Dong, Ionothermal Synthesis of Layered Zirconium Phosphates and Their Tribological Properties in Mineral Oil, Inorg. Chem., 2010, 49, p 8270–8275CrossRefGoogle Scholar
  4. 4.
    X.L. He, H.P. Xiao, H. Choi, A. Diaz, B. Mosby, A. Clearfield, and H. Liang, α-Zirconium Phosphate Nanoplatelets as Lubricant Additives, Colloid Surf. A, 2014, 452, p 32–38CrossRefGoogle Scholar
  5. 5.
    A. Clearfield and S.D. Smith, The Crystal Structure of Zirconium Phosphate and the Mechanism of Its Ion Exchange Behavior, J. Colloid Interface Sci., 1968, 28, p 325–330CrossRefGoogle Scholar
  6. 6.
    A. Clearfield and J. Kalnins, On the Mechanism of Ion Exchange in Zirconium Phosphates. XIII. Exchange of Some Divalent Transition Metal Ions of α-Zirconium Phosphate, J. Inorg. Nucl. Chem., 1976, 38, p 849–852CrossRefGoogle Scholar
  7. 7.
    G. Alberti, U. Costantino, and J.P. Gupta, Crystalline Insoluble Acid Salts of Tetravalent Metals—XVIII, Ion Exchange Properties of Crystalline ZrNaH(PO4)2·5H2O Towards Alkali Metal Ions, J. Inorg. Nucl. Chem., 1974, 36, p 2103–2107CrossRefGoogle Scholar
  8. 8.
    G. Alberti, U. Costantino, and J.P. Gupta, Crystalline Insoluble Acid Salts of Tetravalent Metals—XIX: Na+-Catalyzed H+—Mg2+ and H+—Cs+ Ion Exchanges on α-Zirconium Phosphate, J. Inorg. Nucl. Chem., 1974, 36, p 2109–2114CrossRefGoogle Scholar
  9. 9.
    S. Allulli, C. Ferragina, A.L. Ginestra, M.A. Massucci, N. Tomassini, and A.A.G. Tomlinson, Characterisation and Electronic Properties of Some Inorganic Ion Exchangers of the Zirconium Phosphate Type Containig Transition-Metal Ions, J. Chem. Soc., Dalton Trans., 1976, 8, p 2115–2120CrossRefGoogle Scholar
  10. 10.
    X.S. Zhang, H. Xu, Z.J. Zuo, Z. Lin, S. Ferdov, and J.X. Dong, Hydrothermal Synthesis of Copper Zirconium Phosphate Hydrate [Cu(OH)2Zr(HPO4)2·2H2O] and an Investigation of its Lubrication Properties in Grease, ACS Appl. Mater. Interfaces., 2013, 5, p 7989–7994CrossRefGoogle Scholar
  11. 11.
    S. Allulli, A.L. Ginestra, M.A. Massucci, M. Pelliccioni, and N. Tomassini, Uptake of Transition Metal Ions by Crystalline Zirconium Phosphate, Inorg. Nucl. Chem. Lett., 1974, 10, p 337–341CrossRefGoogle Scholar
  12. 12.
    L. Szirtes, L. Riess, J. Megyeri, and E. Kuzmann, Comparative Study of Layered Tetravalent Metal Phosphates Containing Various First-Row Divalent Metals. Synthesis, Crystalline Structure, Cent. Eur. J. Chem., 2007, 5, p 516–535Google Scholar
  13. 13.
    S. Ahrland, J. Albertsson, Å. Oskarsson, and A. Niklasson, Inorganic Ion Exchangers—VII: The Sorption of First-Row Transition Metal Ions on a Zirconium Phosphate Gel of Low Crystallinity, and a Study of the Reproducibility of the Gel, J. Inorg. Nucl. Chem., 1970, 32, p 2069–2078CrossRefGoogle Scholar
  14. 14.
    S. Ahrland, N.O. Björk, R. Blessing, and R. Herman, Inorganic Ion Exchangers—IX: The Sorption of Divalent Transition Metal Ions on Semi-Crystalline Zirconium Phosphate, J. Inorg. Nucl. Chem., 1974, 36, p 2377–2383CrossRefGoogle Scholar
  15. 15.
    S. Feng and R. Xu, New Materials in Hydrothermal Synthesis, Acc. Chem. Res., 2001, 34, p 239–247CrossRefGoogle Scholar
  16. 16.
    J.A. Darr, J.Y. Zhang, N.M. Makwana, and X.L. Weng, Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions, Chem. Rev., 2017, 117, p 11125–11238CrossRefGoogle Scholar
  17. 17.
    X.Q. Fan, L.P. Wang, W. Li, and S.H. Wan, Improving Tribological Properties of Multialkylated Cyclopentanes under Simulated Space Environment: Two Feasible Approaches, ACS Appl. Mater. Interfaces., 2015, 7, p 14359–14368CrossRefGoogle Scholar
  18. 18.
    X.Q. Fan, W. Li, H.M. Fu, M.H. Zhu, L.P. Wang, Z.B. Cai, J.H. Liu, and H. Li, Probing the Function of Solid Nanoparticle Structure under Boundary Lubrication, ACS Sustain. Chem. Eng., 2017, 5, p 4223–4233CrossRefGoogle Scholar
  19. 19.
    J.M. Martin, Molybdenum Disulphide Lubrication: A.R. Lansdown, Tribology Series, 35, D. Dowson (Ed.) 1999, pp. 380, Tribol. Int., 2000, 33, p 148–149CrossRefGoogle Scholar
  20. 20.
    W.J. Bartz, Some Investigations on the Influence of Particle Size on the Lubricating Effectiveness of Molybdenum Disulfide, Tribol. Trans., 1972, 15, p 207–215Google Scholar
  21. 21.
    C.J. Reeves, P.L. Menezes, M.R. Lovell, and T.C. Jen, The Influence of Surface Roughness and Particulate Size on the Tribological Performance of Bio-Based Multi-Functional Hybrid Lubricants, Tribol. Int., 2015, 88, p 40–55CrossRefGoogle Scholar
  22. 22.
    S.Z. Wen and P. Huang, Principle of Tribology, 2nd ed., Tsinghua University Press, Beijing, 2002Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Research Institute of Special Chemicals, College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations