Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 2024–2037 | Cite as

Assessing Constitutive Models for Prediction of High-Temperature Flow Behavior with a Perspective of Alloy Development

  • Santosh Kumar
  • B. Aashranth
  • M. Arvinth Davinci
  • Dipti Samantaray
  • Utpal Borah
  • A. K. Bhaduri
Article

Abstract

The utility of different constitutive models describing high-temperature flow behavior has been evaluated from the perspective of alloy development. Strain compensated Arrhenius model, modified Johnson–Cook (MJC) model, model D8A and artificial neural network (ANN) have been used to describe flow behavior of different model alloys. These alloys are four grades of SS 316LN with different nitrogen contents ranging from 0.07 to 0.22%. Grades with 0.07%N and 0.22%N have been used to determine suitable material constants of the constitutive equations and also to train the ANN model. While the ANN model has been developed with chemical composition as a direct input, the MJC and D8A models have been amended to incorporate the effect of nitrogen content on flow behavior. The prediction capabilities of all models have been validated using the experimental data obtained from grades containing 0.11%N and 0.14%N. The comparative analysis demonstrates that ‘N-amended D8A’ and ‘N-amended MJC’ are preferable to the ANN model for predicting flow behavior of different grades of 316LN. The work provides detailed insights into the usual statistical error analysis technique and frames five additional criteria which must be considered when a model is analyzed from the perspective of alloy development.

Keywords

alloy development artificial neural network evaluation criteria flow behavior mathematical models 

References

  1. 1.
    Y. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRefGoogle Scholar
  2. 2.
    G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Netherlands, 1983, p 541–547Google Scholar
  3. 3.
    F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825CrossRefGoogle Scholar
  4. 4.
    G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48CrossRefGoogle Scholar
  5. 5.
    Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. Xian, Flow Stress Equation of AZ31 Magnesium Alloy Sheet During Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208(1), p 29–34CrossRefGoogle Scholar
  6. 6.
    H. Kobayashi and B. Dodd, A numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth, Int. J. Impact Eng, 1989, 8(1), p 1–13CrossRefGoogle Scholar
  7. 7.
    Y. Wang and Z. Jiang, Dynamic Compressive Behavior of Selected Aluminum Alloy at Low Temperature, Mater. Sci. Eng. A, 2012, 553, p 176–180CrossRefGoogle Scholar
  8. 8.
    S.K. Paul, Predicting the Flow Behavior of Metals Under Different Strain Rate and Temperature Through Phenomenological Modeling, Comput. Mater. Sci., 2012, 65, p 91–99CrossRefGoogle Scholar
  9. 9.
    A.S. Khan and S. Huang, Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10−5–104 s−1, Int. J. Plast., 1992, 8(4), p 397–424CrossRefGoogle Scholar
  10. 10.
    S. Saadatkia, H. Mirzadeh, and J.-M. Cabrera, Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202CrossRefGoogle Scholar
  11. 11.
    G. Ji, Q. Li, and L. Li, A Physical-Based Constitutive Relation to Predict Flow Stress for Cu-0.4 Mg Alloy During Hot Working, Mater. Sci. Eng. A, 2014, 615, p 247–254CrossRefGoogle Scholar
  12. 12.
    A. He, G. Xie, X. Yang, X. Wang, and H. Zhang, A Physically-Based Constitutive Model for a Nitrogen Alloyed Ultralow Carbon Stainless Steel, Comput. Mater. Sci., 2015, 98, p 64–69CrossRefGoogle Scholar
  13. 13.
    D. Samantaray, S. Mandal, A. Bhaduri, S. Venugopal, and P. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528(4), p 1937–1943CrossRefGoogle Scholar
  14. 14.
    D. Trimble, H. Shipley, L. Lea, A. Jardine, and G.E. O’Donnell, Constitutive Analysis of Biomedical Grade Co-27Cr-5Mo Alloy at High Strain Rates, Mater. Sci. Eng. A, 2017, 682, p 466–474CrossRefGoogle Scholar
  15. 15.
    Z. Zhu, Y. Lu, Q. Xie, D. Li, and N. Gao, Mechanical Properties and Dynamic Constitutive Model of 42CrMo Steel, Mater. Des., 2017, 119, p 171–179CrossRefGoogle Scholar
  16. 16.
    J. Cai, Y. Lei, K. Wang, X. Zhang, C. Miao, and W. Li, A Comparative Investigation on the Capability of Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Describe Flow Behavior of BFe10-1-2 Cupronickel Alloy at Elevated Temperature, J. Mater. Eng. Perform., 2016, 25(5), p 1952–1963CrossRefGoogle Scholar
  17. 17.
    Y. Lin, X.-M. Chen, and G. Liu, A modified Johnson–Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986CrossRefGoogle Scholar
  18. 18.
    A. He, G. Xie, H. Zhang, and X. Wang, A Comparative Study on Johnson–Cook, Modified Johnson–Cook and Arrhenius-Type Constitutive Models to Predict the High Temperature Flow Stress in 20CrMo Alloy Steel, Mater. Des., 2013, 52, p 677–685CrossRefGoogle Scholar
  19. 19.
    Y. Lin and X.-M. Chen, A Combined Johnson–Cook and Zerilli–Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRefGoogle Scholar
  20. 20.
    Y.C. Lin, Q.-F. Li, Y.-C. Xia, and L.-T. Li, A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, 534, p 654–662CrossRefGoogle Scholar
  21. 21.
    Z. Akbari, H. Mirzadeh, and J.-M. Cabrera, A Simple Constitutive Model for Predicting Flow Stress of Medium Carbon Microalloyed Steel During Hot Deformation, Mater. Des., 2015, 77, p 126–131CrossRefGoogle Scholar
  22. 22.
    S. Mandal, B.T. Gockel, S. Balachandran, D. Banerjee, and A.D. Rollett, Simulation of Plastic Deformation in Ti-5553 Alloy Using a Self-Consistent Viscoplastic Model, Int. J. Plast., 2017, 94, p 57–73CrossRefGoogle Scholar
  23. 23.
    P.S. Follansbee and U.F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Metall., 1988, 36(1), p 81–93CrossRefGoogle Scholar
  24. 24.
    K.S. Prasad, A.K. Gupta, Y. Singh, and S.K. Singh, A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels, J. Mater. Eng. Perform., 2016, 25(12), p 5411–5423CrossRefGoogle Scholar
  25. 25.
    L.-E. Lindgren, K. Domkin, and S. Hansson, Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI, 316L, Mech. Mater., 2008, 40(11), p 907–919CrossRefGoogle Scholar
  26. 26.
    S. Venkadesan, P. Sivaprasad, M. Vasudevan, S. Venugopal, and P. Rodriguez, Effect of Ti/C Ratio and Prior Cold Work on the Tensile Properties of 15Cr-15Ni-2.2 Mo-Ti Modified Austenitic Stainless Steel, Trans. Indian Inst. Met., 1992, 45(1), p 57–68Google Scholar
  27. 27.
    P.V. Sivaprasad, Hot Deformation Behaviour of 15Cr-15Ni-2.2 Mo-Ti modified Stainless Steels and 9Cr-1M of Ferritic Steels: A Study Using Processing Maps and Process Modelling. Ph.D. Indian Institute of Technology, 1997Google Scholar
  28. 28.
    A. Poonguzhali, M. Pujar, and U.K. Mudali, Effect of Nitrogen and Sensitization on the Microstructure and Pitting Corrosion Behavior of AISI, Type 316LN Stainless Steels, J. Mater. Eng. Perform., 2013, 22(4), p 1170–1178CrossRefGoogle Scholar
  29. 29.
    M. Mathew, K. Laha, and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A, 2012, 535, p 76–83CrossRefGoogle Scholar
  30. 30.
    S. Mandal, P. Sivaprasad, S. Venugopal, K. Murthy, and B. Raj, Artificial Neural Network Modeling of Composition–Process–Property Correlations in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2008, 485(1), p 571–580CrossRefGoogle Scholar
  31. 31.
    X. Xia, J. Nie, C. Davies, W. Tang, S. Xu, and N. Birbilis, An Artificial Neural Network for Predicting Corrosion Rate and Hardness of Magnesium Alloys, Mater. Des., 2016, 90, p 1034–1043CrossRefGoogle Scholar
  32. 32.
    S. Malinov and W. Sha, Application of Artificial Neural Networks for Modelling Correlations in Titanium Alloys, Mat. Sci. Eng. A, 2004, 365(1), p 202–211CrossRefGoogle Scholar
  33. 33.
    D. Samantaray, S. Mandal, and A. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802CrossRefGoogle Scholar
  34. 34.
    R. Goetz and S. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10(6), p 710–717CrossRefGoogle Scholar
  35. 35.
    V. Ganesan, M. Mathew, and K. Sankara Rao, Influence of Nitrogen on Tensile Properties of 316LN SS, Mater. Sci. Technol., 2009, 25(5), p 614–618CrossRefGoogle Scholar
  36. 36.
    V. Gavriljuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, New York, 2013Google Scholar
  37. 37.
    J. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207(2), p 159–169CrossRefGoogle Scholar
  38. 38.
    J. Simmons, Influence of Nitride (Cr 2N) Precipitation on the Plastic Flow Behavior of High-Nitrogen Austenitic Stainless Steel, Scr. Metall. Mater., 1995, 32(2), p 265–270CrossRefGoogle Scholar
  39. 39.
    D. Samantaray, S. Mandal, V. Kumar, S. Albert, A. Bhaduri, and T. Jayakumar, Optimization of Processing Parameters Based on High Temperature Flow Behavior and Microstructural Evolution of a Nitrogen Enhanced 316L (N) Stainless Steel, Mat. Sci. Eng. A, 2012, 552, p 236–244CrossRefGoogle Scholar
  40. 40.
    D. Samantaray, B. Aashranth, S. Kumar, M.A. Davinci, U. Borah, S.K. Albert, and A. Bhaduri, Plastic Deformation of SS 316LN: Thermo-Mechanical and Microstructural Aspects, Procedia Eng., 2017, 207, p 1785–1790CrossRefGoogle Scholar
  41. 41.
    S. Kumar, D. Samantaray, U. Borah, and A.K. Bhaduri, Analysis of Elevated Temperature Flow Behavior of 316LN Stainless Steel Under Compressive Loading, Trans. Indian Inst. Met., 2016, 70(7), p 1857–1867CrossRefGoogle Scholar
  42. 42.
    D. Trimble and G.E. O’Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168CrossRefGoogle Scholar
  43. 43.
    J. Wang, G. Zhao, L. Chen, and J. Li, A Comparative Study of Several Constitutive Models for Powder Metallurgy Tungsten at Elevated Temperature, Mater. Des., 2016, 90, p 91–100CrossRefGoogle Scholar
  44. 44.
    P. Zhang, C. Hu, Q. Zhu, C.-G. Ding, and H.-Y. Qin, Hot Compression Deformation and Constitutive Modeling of GH4698 Alloy, Mater. Des. (1980–2015), 2015, 65, p 1153–1160CrossRefGoogle Scholar
  45. 45.
    Y.C. Lin, D.-X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123CrossRefGoogle Scholar
  46. 46.
    L. Zhang, X. Feng, X. Wang, and C. Liu, On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature, PLoS ONE, 2014, 9(11), p e102687CrossRefGoogle Scholar
  47. 47.
    A.K. Shukla, S.V.S. Narayana Murty, S.C. Sharma, and K. Mondal, Constitutive Modeling of Hot Deformation Behavior of Vacuum Hot Pressed Cu-8Cr-4Nb Alloy, Mater. Des., 2015, 75, p 57–64CrossRefGoogle Scholar
  48. 48.
    D. Samantaray, A. Patel, U. Borah, S. Albert, and A. Bhaduri, Constitutive Flow Behavior of IFAC-1 Austenitic Stainless Steel Depicting Strain Saturation Over a Wide Range of Strain Rates and Temperatures, Mater. Des., 2014, 56, p 565–571CrossRefGoogle Scholar
  49. 49.
    A. Jenab, I. Sari Sarraf, D.E. Green, T. Rahmaan, and M.J. Worswick, The Use of Genetic Algorithm and Neural Network to Predict Rate-Dependent Tensile Flow Behaviour of AA5182-O Sheets, Mater. Des., 2016, 94, p 262–273CrossRefGoogle Scholar
  50. 50.
    S.-W. Wu, X.-G. Zhou, G.-M. Cao, Z.-Y. Liu, and G.-D. Wang, The Improvement on Constitutive Modeling of Nb-Ti Micro Alloyed Steel by Using Intelligent Algorithms, Mater. Des., 2017, 116, p 676–685CrossRefGoogle Scholar
  51. 51.
    C.M. Sellars and W. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138CrossRefGoogle Scholar
  52. 52.
    Y.-C. Lin, M.-S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499(1), p 88–92CrossRefGoogle Scholar
  53. 53.
    W. Peng, W. Zeng, Q. Wang, and H. Yu, Comparative Study on Constitutive Relationship of As-Cast Ti60 Titanium Alloy During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Mater. Des., 2013, 51, p 95–104CrossRefGoogle Scholar
  54. 54.
    D. Samantaray, S. Mandal, and A. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31(2), p 981–984CrossRefGoogle Scholar
  55. 55.
    Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43(4), p 752–758CrossRefGoogle Scholar
  56. 56.
    G. Ji, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528(13), p 4774–4782CrossRefGoogle Scholar
  57. 57.
    Y. Qin, Q. Pan, Y. He, W. Li, X. Liu, and X. Fan, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression, Mater. Manuf. Process., 2010, 25(7), p 539–545CrossRefGoogle Scholar
  58. 58.
    A. Jenab, A.K. Taheri, and K. Jenab, The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates, J. Mater. Eng. Perform., 2013, 22(3), p 903–910CrossRefGoogle Scholar
  59. 59.
    A. Sarkar and J. Chakravartty, Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach, J. Mater. Eng. Perform., 2013, 22(10), p 2982–2989CrossRefGoogle Scholar
  60. 60.
    S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, Am. Soc. Met., 1984, 1984, p 299Google Scholar
  61. 61.
    T. Holota, M. Kotus, M. Holienčinová, J. Mareček, and M. Zach, Application of Radar Chart in the Selection of Material for Clutch Plates, Acta Univ. Agric. Silvic. Mendel. Brun., 2015, 63, p 5CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Santosh Kumar
    • 1
    • 2
  • B. Aashranth
    • 1
  • M. Arvinth Davinci
    • 1
  • Dipti Samantaray
    • 1
  • Utpal Borah
    • 1
  • A. K. Bhaduri
    • 1
    • 2
  1. 1.Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations