Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1592–1600 | Cite as

High-Temperature Erosive Behavior of Plasma Sprayed Cr3C2-NiCr/Cenosphere Coating

  • Mahantayya Mathapati
  • Mrityunjay Doddamani
  • M. R. Ramesh


This research examines the deposition of Cr3C2-NiCr/cenosphere and Cr3C2-NiCr coatings on MDN 321 steel through the process of plasma spray. In this process, the solid particle erosion test is established at 200, 400, 600 °C with 30° and 90° impact angles. Alumina erodent is adopted to investigate the erosive behavior of the coating at higher temperatures. The properties of the Cr3C2-NiCr/cenosphere coating are established based on the microhardness, the adhesive strength, the fracture toughness, and the ductility. To quantify volume loss as a result of erosion, an optical profilometer is used. At higher temperature, decrease in the erosion volume loss of Cr3C2-NiCr/cenosphere and Cr3C2-NiCr coatings is observed. The erosion-resistive property of Cr3C2-NiCr/cenosphere coating is higher than that of MDN 321 steel by 76%. This property is influenced by high-temperature stability of mullite, alumina, and protective oxide layer that is formed at elevated temperatures. The morphology of eroded coating discloses a brittle mode of material removal.


brittle failure cenospheres erosion plasma spray 



The authors are grateful to Prof. Ramesh Singh, IIT Bombay, India, for providing the optical profilometer facility. The authors wish to thank Spraymet Surface Technologies Pvt Ltd, Bangalore, India, for providing the facility of the plasma spray coating. Department of Science and Technology grant DST/TSG/AMT/2015/394/G is acknowledged by Mrityunjay Doddamani. Authors also thank Mechanical Engineering Department of NIT-K for providing support and facilities required.


  1. 1.
    M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269(3), p 197–205CrossRefGoogle Scholar
  2. 2.
    J.K.N. Murthy and B. Venkataraman, Abrasive Wear Behaviour of WC-CoCr and Cr3C2-20 (NiCr) Deposited by HVOF and Detonation Spray Processes, Surf. Coat. Technol., 2006, 200(8), p 2642–2652CrossRefGoogle Scholar
  3. 3.
    G.J. Yang, C.J. Li, S.J. Zhang, and C.X. Li, High-Temperature Erosion of HVOF Sprayed Cr3C2-NiCr Coating and Mild Steel for Boiler Tubes, J. Therm. Spray Technol., 2008, 17(5-6), p 782–787CrossRefGoogle Scholar
  4. 4.
    M. Manjunatha, R.S. Kulkarni, and M. Krishna, Investigation of HVOF Thermal Sprayed Cr3C2-NiCr Cermet Carbide Coatings on Erosive Performance of AISI, 316 Molybdenum Steel, Procedia Mater. Sci., 2014, 5, p 622–629CrossRefGoogle Scholar
  5. 5.
    J.M. Guilemany, J.M. Miguel, S. Vizcaıno, C. Lorenzana, J. Delgado, and J. Sanchez, Role of Heat Treatments in the Improvement of the Sliding Wear Properties of Cr3C2-NiCr Coatings, Surf. Coat. Technol., 2002, 157(2), p 207–213CrossRefGoogle Scholar
  6. 6.
    M. Kaur, H. Singh, and S. Prakash, High-Temperature Behavior of a High-Velocity Oxy-Fuel Sprayed Cr3C2-NiCr Coating, Metall. Mater. Trans. A, 2012, 43(8), p 2979–2993CrossRefGoogle Scholar
  7. 7.
    A. Arizmendi-Morquecho, A. Chávez-Valdez, and J. Alvarez-Quintana, High Temperature Thermal Barrier Coatings from Recycled Fly Ash Cenospheres, Appl. Therm. Eng., 2012, 48, p 117–121CrossRefGoogle Scholar
  8. 8.
    S. Das, S. Ghosh, A. Pandit, T.K. Bandyopadhyay, A.B. Chattopadhyay, and K. Das, Processing and Characterisation of Plasma Sprayed Zirconia–Alumina–Mullite Composite Coating on a Mild-Steel Substrate, J. Mater. Sci., 2005, 40(18), p 5087–5089CrossRefGoogle Scholar
  9. 9.
    M. Mathapati, M.R. Ramesh, and M. Doddamani, High Temperature Erosion Behavior of Plasma Sprayed NiCrAlY/WC-Co/Cenosphere Coating, Surf. Coat. Technol., 2017, 325, p p98–p106CrossRefGoogle Scholar
  10. 10.
    S.C. Mishra, K.C. Rout, P.V.A. Padmanabhan, and B. Mills, Plasma Spray Coating of Fly Ash Pre-mixed with Aluminium Powder Deposited on Metal Substrates, J. Mater. Process. Technol., 2000, 102(1), p 9–13CrossRefGoogle Scholar
  11. 11.
    L.R. Krishna, D. Sen, D.S. Rao, and G. Sundararajan, Coatability and Characterization of Fly Ash Deposited on Mild Steel by Detonation Spraying, J. Therm. Spray Technol., 2003, 12(1), p 77–79CrossRefGoogle Scholar
  12. 12.
    B.S. Sidhu, H. Singh, D. Puri, and S. Prakash, Wear and Oxidation Behaviour of Shrouded Plasma Sprayed Fly Ash Coatings, Tribol. Int., 2007, 40(5), p 800–808CrossRefGoogle Scholar
  13. 13.
    S.P. Sahu, A. Satapathy, A. Patnaik, K.P. Sreekumar, and P.V. Ananthapadmanabhan, Development, Characterization and Erosion Wear Response of Plasma Sprayed Fly Ash–Aluminum Coatings, Mater. Des., 2010, 31(3), p 1165–1173CrossRefGoogle Scholar
  14. 14.
    A. Behera and S.C. Mishra, Application of Fly-Ash Composite in Plasma Surface Engineering, National Seminar on Waste to Wealth Organized by Indian Institute off Metals-Bhubaneswar Chapter and SGAT-Bhubaneswar, 14–15 December, 2012Google Scholar
  15. 15.
    J.R. Sunil, R. Keshawamurthy, C.P.S. Ramesh, and B.H. Channabasappa, Optimization of Process Parameters For Plasma Sprayed Flyash-Titania Composite Coatings, Mater. Today Proc., 2015, 2, p 2482–2490CrossRefGoogle Scholar
  16. 16.
    A. Mateen, G.C. Saha, T.I. Khan, and F.A. Khalid, Tribological Behaviour of HVOF Sprayed Near-Nanostructured and Microstructured WC-17wt.% Co Coatings, Surf. Coat. Technol., 2011, 206(6), p 1077–1084CrossRefGoogle Scholar
  17. 17.
    M. Doddamani, V.C. Shunmugasamy, N. Gupta, and H.B. Vijayakumar, Compressive and Flexural Properties of Functionally Graded Fly Ash Cenosphere–Epoxy Resin Syntactic Foams, Polym. Compos., 2015, 36(4), p 685–693CrossRefGoogle Scholar
  18. 18.
    B.B. Kumar, M. Doddamani, S.E. Zeltmann, N. Gupta, M.R. Ramesh, and S. Ramakrishna, Processing of Cenosphere/HDPE Syntactic Foams Using an Industrial Scale Polymer Injection Molding Machine, Mater. Des., 2016, 92, p 414–423CrossRefGoogle Scholar
  19. 19.
    S.E. Zeltmann, K.A. Prakash, M. Doddamani, and N. Gupta, Prediction of Modulus at Various Strain Rates from Dynamic Mechanical Analysis Data for Polymer Matrix Composites, Compos. Part B, 2017, 120, p 27–34CrossRefGoogle Scholar
  20. 20.
    V. Manakari, G. Parande, M. Doddamani, V.N. Gaitonde, I.G. Siddhalingeshwar, V.C. Shunmugasamy, and N. Gupta, Dry Sliding Wear of Epoxy/Cenosphere Syntactic Foams, Tribol. Int., 2015, 92, p 425–438CrossRefGoogle Scholar
  21. 21.
    B.B. Kumar, M. Doddamani, S.E. Zeltmann, N. Gupta, S. Gurupadu, and R.R.N. Sailaja, Effect of Particle Surface Treatment and Blending Method on Flexural Properties of Injection-Molded Cenosphere/HDPE Syntactic Foams, J. Mater. Sci., 2016, 51(8), p 3793–3805CrossRefGoogle Scholar
  22. 22.
    S. Matthews, B. James, and M. Hyland, High Temperature Erosion of Cr3C2-NiCr Thermal Spray Coatings—The Role of Phase Microstructure, Surf. Coat. Technol., 2009, 203(9), p 1144–1153CrossRefGoogle Scholar
  23. 23.
    J.K.N. Murthy, K.S. Prasad, K. Gopinath, and B. Venkataraman, Characterisation of HVOF Sprayed Cr3C2-50 (Ni20Cr) Coating and the Influence of Binder Properties on Solid Particle Erosion Behaviour, Surf. Coat. Technol., 2010, 204(24), p 3975–3985CrossRefGoogle Scholar
  24. 24.
    S.C. Mishra, A. Satapathy, K.P. Singh, S.Sethy, P.V.A. Padmanabhan, K.P. Sreekumar, and R. Satpute, Plasma Spray Coating of Fly Ash on Metals for Tribological Application, in Proceedings of the International Seminar on Mineral Processing Technology, Chennai, 2006, p. 825–829Google Scholar
  25. 25.
    A.L. Robertson and K.W. White, Microscale Fracture Mechanisms of a Cr3 C2-NiCr HVOF Coating, Mater. Sci. Eng. A, 2017, 688, p 62–69CrossRefGoogle Scholar
  26. 26.
    G. Bolelli, L.M. Berger, T. Börner, H. Koivuluoto, V. Matikainen, L. Lusvarghi, C. Lyphout, N. Markocsan, P. Nylén, P. Sassatelli, and R. Trache, Sliding and Abrasive Wear Behaviour of HVOF-and HVAF-Sprayed Cr3 C2-NiCr Hardmetal Coatings, Wear, 2016, 358, p 32–50CrossRefGoogle Scholar
  27. 27.
    B.Q. Wang and Z.R. Shui, The hot Erosion Behavior of HVOF Chromium Carbide-Metal Cermet Coatings Sprayed with Different Powders, Wear, 2002, 253(5), p 550–555CrossRefGoogle Scholar
  28. 28.
    C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Erosion of Atmospheric Plasma Sprayed Rare Earth Oxide Coatings Under Air Suspended Corundum Particles, Ceram. Int., 2013, 39(1), p 649–672CrossRefGoogle Scholar
  29. 29.
    H.S. Nithin, V. Desai, and M.R. Ramesh, Elevated Temperature Solid Particle Erosion Performance of Plasma-Sprayed Co-based Composite Coatings with Additions of Al2 O3 and CeO2, J. Mater. Eng. Perform., 2017, 26(11), p 5251–5261CrossRefGoogle Scholar
  30. 30.
    G.C. Ji, C.J. Li, Y.Y. Wang, and W.Y. Li, Erosion Performance of HVOF-Sprayed Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2007, 16(4), p 557–565CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Mahantayya Mathapati
    • 1
  • Mrityunjay Doddamani
    • 1
  • M. R. Ramesh
    • 1
  1. 1.Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations