Skip to main content

The Atomic Structure of Ti2C and Ti3C2 MXenes is Responsible for Their Antibacterial Activity Toward E. coli Bacteria

Abstract

The expanded Ti2C and Ti3C2 MXene phases were synthesized from their parent Ti2AlC and Ti3AlC2 MAX phases using the same conditions of the classical acidic aluminum extraction method. The assumption for the study was that the expanded Ti2C and Ti3C2 MXenes are composed of the same atoms and if are synthesized from MAX phases using the same conditions of the classical acidic aluminum extraction method, the observed bio-effects can be related only to the changes in their structures. The scanning electron microscope investigations indicated that the expanded Ti2C and Ti3C2 sheets formed the specific network of slit-shaped nano-pores. The x-ray photoelectron spectroscopy for chemical analysis (ESCA-XPS) showed almost no difference in surface chemistry of Ti2C and Ti3C2 MXenes. The high-resolution transmission electron microscope investigations revealed, however, differences in atomic structure of the individual Ti2C and Ti3C2 sheets. Measured distance between Ti-C atomic layers in Ti2C was 9.76 Å and was larger by 0.53 Å in comparison with Ti3C2 (9.23 Å). Our investigations of bioactive properties toward model gram-negative Escherichia coli bacterial strain showed that the Ti2C MXene did not influence the viability of bacteria. Contrarily, the Ti3C2 MXene showed antibacterial properties. The results of the study indicate that the structure at the atomic scale may play a key role in the bioactivity of MXenes of the same chemical composition, but different stoichiometry, just like in case of Ti2C and Ti3C2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-dimensional Transition Metal Carbides, ACS Nano, 2012, 6, p 1322–1331

    Article  Google Scholar 

  2. 2.

    Editorial, As thin as it gets, Nature Materials 16, 155 (2017).https://doi.org/10.1038/nmat4854

  3. 3.

    A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, and D. Akinwande, Buckled Two-Dimensional Xene Sheets, Nat. Mater., 2017, 16, p 163–169

    Article  Google Scholar 

  4. 4.

    X. Zhang, Z. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage, J. Energy Chem. 2017, https://doi.org/10.1016/j.jchem.2017.08.004

  5. 5.

    J.M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials, Adv. Mater., 2014, 26, p 992–1005

    Article  Google Scholar 

  6. 6.

    J.-C. Lei, X. Zhang, and Z. Zhou, Recent Advances in MXene: Preparation, Properties, and Applications, Front. Phys., 2015, 10(3), p 276–286

    Article  Google Scholar 

  7. 7.

    V.M. Hong Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, and L.B. Kong, Recent Progress in Layered Transition Metal Carbides and/or Nitrides (MXenes) and Their Composites: Synthesis and Applications, J. Mater. Chem. A, 2017, 5, p 3039–3068

    Article  Google Scholar 

  8. 8.

    F. Wang, C.H. Yang, C.Y. Duan, D. Xiao, Y. Tang, and J.F. Zhu, An Organ-Like Titanium Carbide Material (MXene) with Multilayer Structure Encapsulating Hemoglobin for a Mediator-Free Biosensor, J. Electrochem. Soc., 2015, 162(1), p B16–B21

    Article  Google Scholar 

  9. 9.

    R.B. Rakhi, P. Nayuk, C. Xia, and H.N. Alshareef, Novel Amperometric Glucose Biosensor Based on MXene Nanocomposite, Sci. Rep., 2016, 6, p 36422

    Article  Google Scholar 

  10. 10.

    K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, and K.A. Mahmoud, Antibacterial Activity of Ti3C2Tx MXene, ACS Nano, 2016, 10, p 3674–3684

    Article  Google Scholar 

  11. 11.

    K. Rasool, K. A. Mahmoud, D. J. Johnson, M. Helal, G. R. Berdiyorov, Y. Gogotsi, Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene), Nanosheets Scientific Reports (2017). https://doi.org/10.1038/s41598-017-01714-3

  12. 12.

    A. Jastrzębska, E. Karwowska, D. Basiak, A. Zawada, W. Ziemkowska, T. Wojciechowski, D. Jakubowska, and A. Olszyna, Biological Activity and Bio-Sorption Properties of the Ti2C Studied by Means of Zeta Potential and SEM, Int. J. Electrochem. Sci., 2017, 12, p 2159–2172

    Article  Google Scholar 

  13. 13.

    L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, and H. Wang, A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks, Angew. Chem. Int. Ed., 2017, 56, p 1825–1829

    Article  Google Scholar 

  14. 14.

    C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, and Y. Gogotsi, Charge- and Size-Selective Ion Sieving Through Ti3C2Tx MXene Membranes, J. Phys. Chem. Lett., 2015, 69, p 4026–4031

    Article  Google Scholar 

  15. 15.

    G.R. Berdiyorov, M.E. Madjet, and K.A. Mahmoud, Ionic Sieving Through Ti3C2(OH)2 MXene: First-Principles Calculations, Appl. Phys. Lett., 2016, 108(113110), p 1–4

    Google Scholar 

  16. 16.

    A.M. Jastrzębska, A. Szuplewska, T. Wojciechowski, M. Chudy, W. Ziemkowska, and A. Olszyna, Toxicity of the Delaminated Ti3C2 MXene Studied In Vitro, J. Haz. Mat., 2017, 339, p 1–8

    Article  Google Scholar 

  17. 17.

    C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori, E. Long, S.H. Park, A. Seral-Ascaso, A. Shemeliov, D. Krishnan, C. Morant, X. Liu, G.S. Duesberg, Y. Gogotsi, and V. Nicolosi, Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes), Chem. Mater., 2017, 11(29), p 4848–4856

    Article  Google Scholar 

  18. 18.

    M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-Dimensional Transition Metal Carbides, ACS Nano, 2012, 2(6), p 1322–1331

    Article  Google Scholar 

  19. 19.

    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Mater., 2011, 37(23), p 4248–4253

    Article  Google Scholar 

  20. 20.

    A.N. Enyashin and A.L. Ivanovskii, Structural and Electronic Properties and Stability of MXenes Ti2C and Ti3C2 Functionalized by Methoxy Groups, J. Phys. Chem. C, 2013, 26(117), p 13637–13643

    Article  Google Scholar 

  21. 21.

    I.R. Shein and A.L. Ivanovskii, Graphene-Like Titanium Carbides and Nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from Deintercalated MAX Phases: First-Principles Probing of Their Structural, Electronic Properties and Relative Stability, Comput. Mater. Sci., 2012, 65, p 104–114

    Article  Google Scholar 

  22. 22.

    Q. Tang, Z. Zhou, and P. Shen, Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X=F, OH) Monolayer, J. Am. Chem. Soc., 2012, 134, p 16909–16916

    Article  Google Scholar 

  23. 23.

    A.M. Jastrzębska, A.R. Olszyna, J. Jureczko, and A. Kunicki, New Reduced Graphene Oxide/Alumina (RGO/Al2O3) Nanocomposite: Innovative Method of Synthesis and Characterization, Int. J. Appl. Cer. Tech., 2015, 12(3), p 522–528

    Article  Google Scholar 

  24. 24.

    A.M. Jastrzębska, J. Karcz, R. Letmanowski, D. Zabost, E. Ciecierska, J. Zdunek, E. Karwowska, M. Siekierski, A. Olszyna, and A. Kunicki, Synthesis of the RGO/Al2O3 Core–Shell Nanocomposite Flakes and Characterization of Their Unique Electrostatic Properties Using Zeta Potential Measurements, Appl. Surf. Sci., 2016, 326, p 577–594

    Article  Google Scholar 

  25. 25.

    A.M. Jastrzębska, J. Karcz, E. Karwowska, A. Fiedorczuk, and A. Olszyna, Synthesis and Bioactivity of Reduced Graphene Oxide/Alumina-Noble Metal Nanocomposite Flakes, Int. J. Appl. Cer. Tech., 2016, 13(5), p 856–870

    Article  Google Scholar 

  26. 26.

    A.M. Jastrzębska, J. Karcz, E. Karwowska, A. Fiedorczuk, and A. Olszyna, Synthesis and Bioactivity of RGO/TiO2-Noble Metal Nanocomposite Flakes, J. Nano Res., 2017, 47, p 33–48

    Article  Google Scholar 

Download references

Acknowledgments

The scientific work was financed from the budget for science in the years 2016-2019, Project No. JP2015027774 (Ministry of Science and Higher Education).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Maria Jastrzębska.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding publication of this manuscript.

Additional information

This article is an invited paper selected from presentations at ‘‘11th International Conference on Advanced Computational Engineering and Experimenting, ACE-X 2017’’, held July 3–6, 2017, in Vienna, Austria, and has been expanded from the original presentation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jastrzębska, A.M., Karwowska, E., Wojciechowski, T. et al. The Atomic Structure of Ti2C and Ti3C2 MXenes is Responsible for Their Antibacterial Activity Toward E. coli Bacteria. J. of Materi Eng and Perform 28, 1272–1277 (2019). https://doi.org/10.1007/s11665-018-3223-z

Download citation

Keywords

  • antibacterial
  • bacteria
  • biological activity
  • MXene
  • Ti2C
  • Ti3C2