Skip to main content
Log in

Evolution of Dynamic Recrystallization in 35CrMo Steel During Hot Deformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To better understand the dynamic recrystallization (DRX) behavior of 35CrMo steel during hot deformation, a series of isothermal compression tests were carried out at different temperatures and strain rates. Using a constitutive equation built from the data obtained and the Arrhenius equation, the activation energy for hot deformation was determined through regression to be 342.69 kJ/mol. A model of the DRX kinetics was also constructed to characterize the influence of accumulated strain, temperature and strain rate on DRX evolution, which revealed that lower temperatures and higher strain rates require greater strain to achieve the same DRX volume fraction. Optical examination of the microstructure after deformation confirmed that this model accurately reflects reality and that grain size varies directly with deformation temperature, but inversely with strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo steel, Comput. Mater. Sci., 2008, 42(3), p 470–477

    Article  Google Scholar 

  2. H.K.D.H. Bhadeshia and R.W.K. Honeycombe, 14—Modelling of Microstructure and Properties, Steels, 3rd ed., H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Ed., Butterworth-Heinemann, Oxford, 2006, p 307–334

    Google Scholar 

  3. R. Xin, B. Wang, X. Chen, G. Huang, and Q. Liu, Examination of Dynamic Recrystallization During Compression of AZ31 Magnesium, Sci. China Ser. E Technol. Sci., 2009, 52(1), p 176–179

    Article  Google Scholar 

  4. Y. Lin, D. He, M. Chen, X. Chen, C. Zhao, X. Ma, and Z. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24

    Article  Google Scholar 

  5. G. Xie, A. He, H. Zhang, G. Wang, and X. Wang, A Physically Based Dynamic Recrystallization Model Considering Orientation Effects for a Nitrogen Alloyed Ultralow Carbon Stainless Steel during Hot Forging, J. Iron. Steel Res. Int., 2016, 23(4), p 364–371

    Article  Google Scholar 

  6. Y.G. Liu, M.Q. Li, and J. Luo, THE modelling of Dynamic Recrystallization in the Isothermal Compression of 300 M Steel, Mater. Sci. Eng. A, 2013, 574, p 1–8

    Article  Google Scholar 

  7. S.M. Abbasi and A. Shokuhfar, Prediction of Hot Deformation Behaviour of 10Cr-10Ni-5Mo-2Cu Steel, Mater. Lett., 2007, 61(11–12), p 2523–2526

    Article  Google Scholar 

  8. G. Quan, A. Mao, G. Luo, J. Liang, D. Wu, and J. Zhou, Constitutive Modeling for the Dynamic Recrystallization Kinetics of As-extruded 3Cr20Ni10W2 Heat-Resistant Alloy Based on Stress–Strain Data, Mater. Des., 2013, 52, p 98–107

    Article  Google Scholar 

  9. B. Fang, Z. Ji, M. Liu, G. Tian, C. Jia, T. Zeng, B. Hu, and Y. Chang, Critical Strain and Models Of Dynamic Recrystallization for FGH96 Superalloy During Two-Pass Hot Deformation, Mater. Sci. Eng. A, 2014, 593, p 8–15

    Article  Google Scholar 

  10. Y. Sun, J. Xie, S. Hao, A. Wang, P. Liu, and M. Li, Dynamic Recrystallization Model of 30%SiCp/Al Composite, J. Alloys Compd., 2015, 649, p 865–871

    Article  Google Scholar 

  11. B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan, Constitutive Modeling of Dynamic Recrystallization Kinetics And Processing Maps of Mg–2.0Zn–0.3Zr Alloy Based on True Stress–Strain Curves, Mater. Sci. Eng. A, 2013, 560, p 727–733

    Article  Google Scholar 

  12. A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe, Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb–Ti Microalloyed Steels, Mater. Sci. Eng. A, 2003, 361(1–2), p 367–376

    Article  Google Scholar 

  13. H. Zhang, K. Zhang, S. Jiang, H. Zhou, C. Zhao, and X. Yang, Dynamic Recrystallization Behavior of a γ′-Hardened Nickel-Based Superalloy During Hot Deformation, J. Alloys Compd., 2015, 623, p 374–385

    Article  Google Scholar 

  14. S. Saadatkia, H. Mirzadeh, and J.M. Cabrera, Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202

    Article  Google Scholar 

  15. J. Li, Y. Liu, Y. Wang, B. Liu, and Y. He, Dynamic Recrystallization Behavior of an As-cast TiAl Alloy During Hot Compression, Mater. Charact., 2014, 97, p 169–177

    Article  Google Scholar 

  16. J.J.W. Morris, Comments on the Microstructure and Properties of Ultrafine Grained Steel, ISIJ Int., 2008, 48(8), p 1063–1070

    Article  Google Scholar 

  17. J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, and W.H. Zhang, Effect of Nitrocarburizing and Post-oxidation on Fatigue Behavior of 35CrMo Alloy Steel in Very High Cycle Fatigue Regime, Int. J. Fatigue, 2011, 33(7), p 880–886

    Article  Google Scholar 

  18. J.W. Zhang, L.T. Lu, P.B. Wu, J.J. Ma, G.G. Wang, and W.H. Zhang, Inclusion Size Evaluation and Fatigue Strength Analysis of 35CrMo Alloy Railway Axle Steel, Mater. Sci. Eng. A, 2013, 562, p 211–217

    Article  Google Scholar 

  19. Y. Lv, Influence of Laser Surface Melting on the Micropitting Performance of 35CrMo Structural Steel Gears, Mater. Sci. Eng. A, 2013, 564, p 1–7

    Article  Google Scholar 

  20. B. Zhang, H. Zhang, and X. Ruan, Dynamic recrystallization behavior of 35CrMo structural steel, J Cent South Univ Technol, 2003, 10(1), p 13–19 (in English)

    Article  Google Scholar 

  21. ASTM International, Standard Test Methods for Determining Average Grain Size, ASTM E112-96(2004), West Conshohocken 2004

  22. R. Ebrahimi and E. Shafiei, Mathematical Modeling of Single Peak Dynamic Recrystallization Flow Stress Curves in Metallic Alloys, Recrystallization, P.K. Sztwiertnia, Ed., InTech, Croatia, 2012,

    Chapter  Google Scholar 

  23. M.J. Luton and C.M. Sellars, Dynamic Recrystallization in Nickel and Nickel-Iron Alloys During High Temperature Deformation, Acta Metall., 1969, 17(8), p 1033–1043

    Article  Google Scholar 

  24. T. Sakai and J.J. Jonas, Overview no. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32(2), p 189–209

    Article  Google Scholar 

  25. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32

    Article  Google Scholar 

  26. C.M. Sellars and W.J. McTegart, On the Mechanism of hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138

    Article  Google Scholar 

  27. C.M. Sellars, The kinetics of softening processes during hot working of austenite, Czechoslov J Phys B, 1985, 35(3), p 239–248 (in English)

    Article  Google Scholar 

  28. N.D. Ryan and H.J. McQueen, Dynamic recovery, strain hardening and flow stress in hot working of 316 steel, Czechoslov J Phys B, 1989, 39(4), p 458–465 (in English)

    Article  Google Scholar 

  29. N.D. Ryan and H.J. McQueen, Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel, Can. Metall. Q., 1990, 29(2), p 147–162

    Article  Google Scholar 

  30. N.D. Ryan and H.J. McQueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process. Technol., 1990, 21(2), p 177–199

    Article  Google Scholar 

  31. E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136

    Article  Google Scholar 

  32. A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46(11), p 1679–1684

    Article  Google Scholar 

  33. H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31(3), p 1174–1179

    Article  Google Scholar 

  34. Y. Liu, Y. Ning, Y. Nan, H. Liang, Y. Li, and Z. Zhao, Characterization of Hot Deformation Behavior and Processing Map of FGH4096–GH4133B Dual Alloys, J. Alloys Compd., 2015, 633, p 505–515

    Article  Google Scholar 

  35. X. Xia, Q. Chen, J. Li, D. Shu, C. Hu, S. Huang, and Z. Zhao, Characterization of Hot Deformation Behavior of As-extruded Mg–Gd–Y–Zn–Zr Alloy, J. Alloys Compd., 2014, 610, p 203–211

    Article  Google Scholar 

  36. Y. Ning, Z. Yao, X. Liang, and Y. Liu, Flow Behavior and Constitutive Model for Ni–20.0Cr–2.5Ti–1.5Nb–1.0Al Superalloy Compressed Below γ′-Transus Temperature, Mater. Sci. Eng. A, 2012, 551, p 7–12

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support received from the National Program on Key Basic Research Project of China (No.2014CB046702) and to Wang Zi in the School of Powder Metallurgy Research Institute of Central South University, Changsha, for providing the testing facilities needed to carry out the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbing Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Huang, Y. & Liu, Y. Evolution of Dynamic Recrystallization in 35CrMo Steel During Hot Deformation. J. of Materi Eng and Perform 27, 924–932 (2018). https://doi.org/10.1007/s11665-018-3220-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3220-2

Keywords

Navigation