Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D)

  • Kalidass Suresh
  • Kamineni Pitcheswara Rao
  • Dharmendra Chalasani
  • Prasad Yellapregada Venkata Rama Krishna
  • Norbert Hort
  • Hajo Dieringa
Article
  • 3 Downloads

Abstract

The hot deformation characteristics of MRI 230D alloy have been evaluated in the temperature range 260-500 °C and strain rate range 0.0003-10 s−1, on the basis of processing map. The processing map exhibited two domains in the ranges: (1) 300-370 °C and 0.0003-0.001 s−1 and (2) 370-480 °C and 0.0003-0.1 s−1. Dynamic recrystallization occurs in the both domains with basal slip dominating in the first domain along with climb as recovery process and second-order pyramidal slip dominating in the second with the recovery by cross-slip. In Domains (1) and (2), the apparent activation energy values estimated using the kinetic rate equation are 143 and 206 kJ/mole, respectively, the first one being close to that for lattice self-diffusion confirming climb. It is recommended that the alloy is best processed at 450 °C and strain rates less than 0.1 s−1, where non-basal slip and cross-slip occur extensively to impart excellent workability. The alloy exhibits flow instability in the form of adiabatic shear band formation and flow localization at lower temperatures and higher strain rates. Forging of a cup-shaped component was performed under various conditions, and the results validated the predictions of the processing map on the workability domains as well as the instability regimes.

Keywords

hot forging hot workability kinetic analysis Mg-Al-Ca-Sn-Sr alloy microstructure processing map 

Notes

Acknowledgments

The authors would like to thank Mr. C.H. Yuen, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, for his help during the experimental work.

References

  1. 1.
    H. Dieringa, Y. Huang, P. Wittke, M. Klein, F. Walther, M. Dikovits, and C. Poletti, Compression Creep Response of Magnesium Alloy DieMag422 Containing Barium Compared with the Commercial Creep-Resistant Alloys AE42 and MRI230D, Mater. Sci. Eng., A, 2013, 585, p 430–438.  https://doi.org/10.1016/j.msea.2013.07.041 CrossRefGoogle Scholar
  2. 2.
    J. Shen, K. Kondoh, T.L. Jones, S.N. Mathaudhu, L.J. Kecskes, and Q. Wei, Effect of Strain Rate on the Mechanical Properties of Magnesium Alloy AMX602, Mater. Sci. Eng., A, 2016, 649, p 338–348.  https://doi.org/10.1016/j.msea.2015.10.022 CrossRefGoogle Scholar
  3. 3.
    L. Zhang, K.-K. Deng, K.-B. Nie, F.-J. Xu, K. Su, and W. Liang, Microstructures and Mechanical Properties of Mg-Al-Ca Alloys Affected by Ca/Al Ratio, Mater. Sci. Eng., A, 2015, 636, p 279–288.  https://doi.org/10.1016/j.msea.2015.03.100 CrossRefGoogle Scholar
  4. 4.
    T. Sato and M.V. Kral, Microstructural Evolution of Mg-Al-Ca-Sr Alloy During Creep, Mater. Sci. Eng., A, 2008, 498, p 369–376.  https://doi.org/10.1016/j.msea.2008.08.006 CrossRefGoogle Scholar
  5. 5.
    D. Amberger, P. Eisenlohr, and M Göken, Influence of Microstructure on Creep Strength of MRI 230D, Mg Alloy, in 15th International Conference on the Strength of Materials (ICSMA-15), J. Phys. Conf. Ser., IOP Publishing, 2010, 240, 012068;  https://doi.org/10.1088/1742-6596/240/1/012068
  6. 6.
    D. Amberger, P. Eisenlohr, and M. Göken, On the Importance of a Connected Hard-Phase Skeleton for the Creep Resistance of Mg Alloys, Acta Mater., 2012, 60, p 2277–2289.  https://doi.org/10.1016/j.actamat.2012.01.017 CrossRefGoogle Scholar
  7. 7.
    A. Sadeghi, M. Hoseini, and M. Pekguleryuz, Effect of Sr Addition on Texture Evolution of Mg-3Al-1Zn (AZ31) Alloy During Extrusion, Mater. Sci. Eng., A, 2011, 528, p 3096–3104.  https://doi.org/10.1016/j.msea.2010.12.091 CrossRefGoogle Scholar
  8. 8.
    A. Sadeghi and M. Pekguleryuz, Recrystallization and Texture Evolution of Mg-3%Al-1%Zn-(0.4-0.8)%Sr Alloys During Extrusion, Mater. Sci. Eng., A, 2011, 528, p 1678–1685.  https://doi.org/10.1016/j.msea.2010.10.096 CrossRefGoogle Scholar
  9. 9.
    K. Hazeli, A. Sadeghi, M.O. Pekguleryuz, and A. Kontsos, The Effect of Strontium in Plasticity of Magnesium Alloys, Mater. Sci. Eng., A, 2013, 578, p 383–393.  https://doi.org/10.1016/j.msea.2013.04.101 CrossRefGoogle Scholar
  10. 10.
    B. Ebel-Wolf, F. Walther, and D. Eifler, Influence of Elevated Temperatures on the Cyclic Deformation Behaviour of the Magnesium Die-Cast Alloys AZ91D and MRI230D, Mater. Sci. Eng., A, 2008, 486, p 634–640.  https://doi.org/10.1016/j.msea.2007.10.003 CrossRefGoogle Scholar
  11. 11.
    A.K. Mondal, A.R. Kesavan, B.R.K. Reddy, H. Dieringa, and S. Kumar, Correlation of Microstructure and Creep Behavior of MRI230D Mg Alloy Developed by Two Different Casting Technologies, Mater. Sci. Eng., A, 2015, 631, p 45–51.  https://doi.org/10.1016/j.msea.2015.02.037 CrossRefGoogle Scholar
  12. 12.
    Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, 2nd ed., ASM International, Materials Park OH, 2015, ISBN 978-1-62708-091-0Google Scholar
  13. 13.
    Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258.  https://doi.org/10.1179/imr.1998.43.6.243 CrossRefGoogle Scholar
  14. 14.
    Y.V.R.K. Prasad and K.P. Rao, Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300-950 °C, Mater. Sci. Eng. A, 2005, 391, p 141–150.  https://doi.org/10.1016/j.msea.2004.08.049 CrossRefGoogle Scholar
  15. 15.
    A. Janz, J. Grober, and R. Schmid-Fetzer, Thermodynamics and Constitution of Mg-Al-Ca-Sr-Mn Alloys: Part II. Procedure for Multicomponent Key Sample Selection and Application to the Mg-Al-Ca-Sr and Mg-Al-Ca-Sr-Mn Systems, J. Phase Equilib. Diffus., 2009, 30, p 157–175.  https://doi.org/10.1007/s11669-009-9468-3 CrossRefGoogle Scholar
  16. 16.
    J.R. Morris, J. Scharaff, K.M. Ho, D.E. Turner, Y.Y. Ye, and M.H. Yoo, Prediction of a 1122 hcp Stacking Fault Using a Modified Generalized Stacking-Fault Calculation, Phil. Mag., 1997, 76, p 1065–1077.  https://doi.org/10.1080/01418619708200015 CrossRefGoogle Scholar
  17. 17.
    J.J. Jonas, C.M. Sellars, and W.J.M.G. Tegart, Strength and Structure Under Hot Working Conditions, Metall. Rev., 1969, 14, p 1–24.  https://doi.org/10.1179/mtlr.1969.14.1.1 Google Scholar
  18. 18.
    H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps. Oxford: Pergamon; 1982, p 44. http://trove.nla.gov.au/work/10811489
  19. 19.
    K.P. Rao and Y.V.R.K. Prasad, Materials Modeling and Finite Element Simulation of Isothermal Forging of Electrolytic Copper, Mater. Des., 2011, 32, p 1851–1858.  https://doi.org/10.1016/j.matdes.2010.12.018 CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Kalidass Suresh
    • 1
    • 2
  • Kamineni Pitcheswara Rao
    • 2
  • Dharmendra Chalasani
    • 2
  • Prasad Yellapregada Venkata Rama Krishna
    • 3
  • Norbert Hort
    • 4
  • Hajo Dieringa
    • 4
  1. 1.Department of PhysicsBharathiar UniversityCoimbatoreIndia
  2. 2.Department of Mechanical and Biomedical EngineeringCity University of Hong KongKowloonHong Kong, SAR
  3. 3.processingmaps.comBengaluruIndia
  4. 4.Magnesium Innovation CentreHelmholtz Zentrum GeesthachtGeesthachtGermany

Personalised recommendations