Advertisement

Analysis of Chemical Bonding and Structural Network of Gold Silicide in Core–Shell Silicon Nanowire

Article
  • 43 Downloads

Abstract

The Au-catalyzed core–shell silicon nanowires (Si-NWs) were synthesized by chemical vapor deposition by using SiH4 and H2 precursor gases. The TEM and FTIR studies revealed that the Si-NWs consist of core silicon surrounded by a thick oxide sheath and Au distributed at the a-SiOx/Si interface. The x-ray photoelectron spectroscopy (XPS) was used to study the chemical composition and electronic environments of gold silicide in the a-SiO x /Si-NWs. The elemental analysis and chemical network of gold silicide of core–shell Si-NWs were explained on the basis of the random atomic distribution of Si, O and Au atoms. The Raman spectra and XRD peak reveal the crystalline core of Si-NWs. The individual contribution to the Au (4d) core orbital was deconvoluted to Au-Si-Au, Au-Si-O, Au-Au, Au-O-Au, Au-O-Si and Au=O/Au-O2 bonding structure. The analysis shows that the O linked with Si and Au has also contributed to growth of Si-NWs.

Keywords

FESEM gold silicide silicon nanowires TEM XPS 

Notes

Acknowledgments

The financial support from BK21 program, Republic of Korea, is acknowledged.

References

  1. 1.
    Y. Shan and S.J. Fonash, Self-Assembling Silicon Nanowires for Device Applications Using the Nanochannel-Guided “Grow-in-Place” Approach, ACS Nano, 2008, 2(3), p 429–434CrossRefGoogle Scholar
  2. 2.
    Q. Li, S.M. Koo, M.D. Edelstein, J.S. Suehle, and C.A. Richter, Silicon Nanowire Electromechanical Switches for Logic Device Application, Nanotechnology, 2007, 18(31), p 315202–315206CrossRefGoogle Scholar
  3. 3.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources, Nature, 2007, 449, p 885–889CrossRefGoogle Scholar
  4. 4.
    B.S. Swain, B.P. Swain, and N.M. Hwang, Hydrogen Dilution-Induced Chemical State Modification in Silicon Nanowires, J. Phys. Chem. C, 2010, 11(36), p 15274–15279CrossRefGoogle Scholar
  5. 5.
    J. Arbiol, B. Kalache, P.R.I. Cabarrocas, J.R. Morante, and A.F.I. Morral, Influence of Cu as a Catalyst on the Properties of Silicon Nanowires Synthesized by the Vapour–Solid–Solid Mechanism, Nanotechnology, 2007, 18(30), p 305606–305613CrossRefGoogle Scholar
  6. 6.
    A.M. Mohammad, S. Dey, K.K. Lew, J.M. Redwing, and S.E. Mohney, Fabrication of Cobalt Silicide Nanowire Contacts to Silicon Nanowires, J. Electrochem. Soc., 2003, 150(9), p G577–G580CrossRefGoogle Scholar
  7. 7.
    I. Ahmad, M. Fay, Y. Xia, X. Hou, A. Kennedy, and Y. Zhu, Fe-Assisted Synthesis of Si Nanowires, J. Phys. Chem. C, 2009, 113(4), p 1286–1292CrossRefGoogle Scholar
  8. 8.
    J. Kim, J.U. Bae, W.A. Anderson, H.M. Kim, and K.B. Kim, Solid-State Growth of Nickel Silicide Nanowire by the Metal-Induced Growth Method, J. Mater. Res., 2006, 21, p 2936–2940CrossRefGoogle Scholar
  9. 9.
    S.H. Christiansen, M. Becker, S. Fahlbusch, J. Michler, V. Sivakov, G. Andra, and R. Geiger, Signal Enhancement in Nano-Raman Spectroscopy by Gold Caps on Silicon Nanowires Obtained by Vapour–Liquid–Solid Growth, Nanotechnology, 2007, 18, p 035503CrossRefGoogle Scholar
  10. 10.
    C.C. Buttner, N.D. Zakharov, E. Pippel, U. Gosele, and P. Werner, Gold-Enhanced Oxidation of MBE-Grown Silicon Nanowires, Semicond. Sci. Technol., 2008, 23, p 075040CrossRefGoogle Scholar
  11. 11.
    J.B. Hannon, S. Kodambaka, F.M. Ross, and R.M. Tromp, The Influence of the Surface Migration of Gold on The Growth of Silicon Nanowires, Nature, 2006, 440, p 69–71CrossRefGoogle Scholar
  12. 12.
    P. Werner, N.D. Zakharov, G. Gerth, L. Schubert, and U. Gösele, On the Formation of Si Nanowires by Molecular Beam Epitaxy, Int. J. Mater. Res., 2006, 97, p 1008–1015CrossRefGoogle Scholar
  13. 13.
    L. Pan, K. Lew, J.M. Redwing, and E.C. Dickey, Effect of Diborane on the Microstructure of Boron-Doped Silicon Nanowires, J. Cryst. Growth, 2005, 277(1–4), p 428–436CrossRefGoogle Scholar
  14. 14.
    Y. Li, W. Shi, A. Gupta, and N. Chopra, Morphological Evolution of Gold Nanoparticles on Silicon Nanowires and Their Plasmonics, RSC Adv., 2015, 5, p 49708–49718CrossRefGoogle Scholar
  15. 15.
    B.S. Swain, B.P. Swain, K. Mahmood, S.-M. Yang, and N.-M. Hwang, Structural and Optical Properties of H2 Diluted c-Si/a-SiOx Core-Shell Silicon Nanowire, Appl. Phys. A Mater. Sci. Process., 2014, 118(1), p 269–274CrossRefGoogle Scholar
  16. 16.
    B.S. Swain, B.P. Swain, and N.M. Hwang, Chemical Surface Passivation of Silicon Nanowires Grown by APCVD, Curr. Appl. Phys., 2010, 10(3), p S439–S442CrossRefGoogle Scholar
  17. 17.
    M. Kirkham, Z.L. Wang, and R.L. Snyder, Tracking the Catalyzed Growth Process of Nanowires by in Situ X-Ray Diffraction, J. Appl. Phys., 2010, 108, p 014304CrossRefGoogle Scholar
  18. 18.
    B.S. Swain, S.S. Lee, Sang H. Lee, B.P. Swain, and N.M. Hwang, Effect of H2 Ambient Annealing on Silicon Nanowires Prepared by Atmospheric Pressure Chemical Vapor Deposition, Chem. Phys. Lett., 2010, 494, p 269–273CrossRefGoogle Scholar
  19. 19.
    Y. Sohn, D. Pradhan, A. Radi, and K.T. Leung, Interfacial Electronic Structure of Gold Nanoparticles on Si(100): Alloying Versus Quantum Size Effects, Langmuir, 2009, 25(16), p 9557–9563CrossRefGoogle Scholar
  20. 20.
    O. Domichil, V. Calvo, A. Besson, P. Noe, B. Solem, N. Pouc, F. Oehler, P. Gentel, and N. Magnea, Surface Recombination Velocity Measurements of Efficiently Passivated Gold-Catalyzed Silicon Nanowires by a New Optical Method, Nano Lett., 2010, 10(7), p 2323–2329CrossRefGoogle Scholar
  21. 21.
    D.C. Lim, I.L. Salido, R. Dietsche, M. Bubek, and Y.D. Kim, Electronic and Chemical Properties of Supported Au Nanoparticles, Chem. Phys., 2006, 330(3), p 441–448CrossRefGoogle Scholar
  22. 22.
    K. Yang, H. Wang, K. Zou, and X. Zhang, Gold Nanoparticle Modified Silicon Nanowires as Biosensors, Nanotechnology, 2006, 17(11), p S276–S279CrossRefGoogle Scholar
  23. 23.
    D.C. Lim, I.L. Salido, R. Dietsche, M. Bubek, and Y.D. Kim, Electronic and Chemical Properties of Supported Au Nanoparticles, Chem. Phys., 2006, 330(3), p 441–448CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Centre for Materials Science and NanotechnologySikkim Manipal Institute of TechnologyMajitar, RangpoIndia
  2. 2.School of Advanced Materials EngineeringKookmin UniversitySeoulKorea

Personalised recommendations