Skip to main content
Log in

Improvement of Electropolishing of 1100 Al Alloy for Solar Thermal Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum sheets-based mirrors are finding applicability in high-temperature solar concentrating technologies because they are cost-effective, lightweight and have high mechanical properties. Nonetheless, the reflectance percentages obtained by electropolishing are not close to the reflectance values of the currently used evaporated films. Therefore, controlling key factors affecting electropolishing processes became essential in order to achieve highly reflective aluminum surfaces. This study investigated the effect of both the electropolishing process and previous heat treatment on the total reflectance of the AA 1100 aluminum alloy. An acid electrolyte and a modified Brytal process were evaluated. Total reflectance was measured by means of UV–Vis spectrophotometry. Reflectance values higher than 80% at 600 nm were achieved for both electrolytes. Optical microscopy and scanning electron microscopy images showed uneven dissolution for the acid electropolished samples causing a reflectance drop in the 200-450 nm region. The influence of heat treatment, previously to electropolishing, was tested at two different temperatures and various holding times. It was found that reflectance increases around 15% for the heat-treated and electropolished samples versus the non-heat-treated ones. A heat treatment at low temperature combined with a short holding time was enough to improve the sample total reflectance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Herez, M. Ramadan, and M. Khaled, Review on Solar Cooker Systems: Economic and Environmental Study for Different Lebanese Scenarios, Renew. Sustain. Energy Rev., 2017, 2018(81), p 421–432. https://doi.org/10.1016/j.rser.2017.08.021

    Google Scholar 

  2. M. Brogren, A. Helgesson, B. Karlsson, J. Nilsson, and A. Roos, Optical Properties, Durability, and System Aspects of a New Aluminium-Polymer-Laminated Steel Reflector for Solar Concentrators, Sol. Energy Mater. Sol. Cells, 2004, 82(3), p 387–412

    Article  Google Scholar 

  3. R.B. Pettit and E.P. Roth, Solar Mirror Materials: Their Properties and Uses in Solar Concentrating Collectors, Solar Mirror Materials, Academic Press, Inc., Albiquerque, 1980, p 171–197. https://doi.org/10.1016/b978-0-12-511160-7.50012-0

  4. A. Fernández-García, F. Sutter, L. Martínez-Arcos, L. Valenzuela, and C. Sansom, Advanced Mirror Concepts for Concentrating Solar Thermal Systems, Advances in Concentrating Solar Thermal Research and Technology, M. Blanco and L. Ramirez Santigosa, Ed., Elsevier, 2017, p 29–43. https://doi.org/10.1016/b978-0-08-100516-3.00002-2.

  5. R. Almanza, C. Jiefeng, G. Correa, and M. Mazari, Further Option for Solar Concentrators: Aluminum First Surface Mirrors, Sol. Energy, 1995, 54(5), p 333–343

    Article  Google Scholar 

  6. J. Deubener, G. Helsch, A. Moiseev, and H. Bornhöft, Glasses for Solar Energy Conversion Systems, J. Eur. Ceram. Soc., 2009, 29(7), p 1203–1210

    Article  Google Scholar 

  7. A. García-Segura, A. Fernández-García, M.J. Ariza, F. Sutter, and L. Valenzuela, Durability Studies of Solar Reflectors: A Review, Renew. Sustain. Energy Rev., 2016, 62, p 453–467

    Article  Google Scholar 

  8. D. Mills, Advances in Solar Thermal Electricity Technology, Sol. Energy, 2004, 76(1–3), p 19–31

    Article  Google Scholar 

  9. R.E. Hummel, Reflectivity of Silver- and Aluminium-Based Alloys for Solar Reflectors, Sol. Energy, 1981, 27(6), p 449–455

    Article  Google Scholar 

  10. G. Jorgensen, T. Williams, and T. Wendelin, Advanced Reflector Materials for Solar Concentrators, 7th International Symposium on Solar Thermal Concentrating Technologies, (Golden, Colorado 80401-3393 A), National Renewable Energy Laboratory, 1994, p 1–11

  11. T. Fend, B. Hoffschmidt, G. Jorgensen, H. Küster, D. Krüger, R. Pitz-Paal, P. Rietbrock, and K.J. Riffelmann, Comparative Assessment of Solar Concentrator Materials, Sol. Energy, 2003, 74(2), p 149–155

    Article  Google Scholar 

  12. C.E. Kennedy, R.V. Smilgys, D.A. Kirkpatrick, and J.S. Ross, Optical Performance and Durability of Solar Reflectors Protected by an Alumina Coating, Thin Solid Films, 1997, 304(1–2), p 303–309. https://doi.org/10.1016/s0040-6090(97)00198-3

    Article  Google Scholar 

  13. T. Fend, G. Jorgensen, and H. Küster, Applicability of Highly Reflective Aluminium Coil for Solar Concentrators, Sol. Energy, 2000, 68(4), p 361–370

    Article  Google Scholar 

  14. J.E. Hatch and Aluminum Association, Aluminum: Properties and Physical Metallurgy, ASM International, OH, 1984

    Google Scholar 

  15. M. Bauccio, ASM Metal Reference Book, 3rd ed., ASM International, Materials Park, 1993

    Google Scholar 

  16. P.G. Wernick, S. Pinner, and R. Sheasby, The Surface Treatment and Finishing of Aluminum and Its Alloys, 5th ed., ASM International, Great Britain, 1987, p 1–1273

    Google Scholar 

  17. O. Jessensky, F. Müller, and U. Gösele, Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina, Appl. Phys. Lett., 1998, 72(10), p 1173–1175

    Article  Google Scholar 

  18. S. Van Gils, S. Holten, E. Stijns, M. Vancaldenhoven, H. Terryn, and L. Mattsson, Electropolishing of Aluminium: Processing and Assessment of Visual Appearance, Surf. Interface Anal., 2003, 35(2), p 121–127

    Article  Google Scholar 

  19. M.G. Holló, A New Interpretation of the Substructure of Electropolished Aluminium Surfaces, Acta Metall., 1960, 8, p 265–268

    Article  Google Scholar 

  20. H. Asoh, S. Ono, T. Hirose, M. Nakao, and H. Masuda, Growth of Anodic Porous Alumina with Square Cells, Electrochim. Acta, 2003, 48(20–22), p 3171–3174

    Article  Google Scholar 

  21. S. Ono, M. Saito, and H. Asoh, Self-Ordering of Anodic Porous Alumina Induced by Local Current Concentration: Burning, Electrochem. Solid-State Lett., 2004, 7(7), p B21–B24. https://doi.org/10.1149/1.1738553

    Article  Google Scholar 

  22. S. Ono, M. Saito, and H. Asoh, Self-Ordering of Anodic Porous Alumina Formed in Organic Acid Electrolytes, Electrochim. Acta, 2005, 51(5), p 827–833

    Article  Google Scholar 

  23. H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al, J. Electrochem. Soc., 2001, 148(4), p B152–B156

    Article  Google Scholar 

  24. F. Rashidi, T. Masuda, H. Asoh, and S. Ono, Metallographic Effects of Pure Aluminum on Properties of Nanoporous Anodic Alumina (NPAA), Surf. Interface Anal., 2013, 45(10), p 1490–1496

    Article  Google Scholar 

  25. C. Chi, J.-H. Lee, I. Kim, and H.-J. Oh, Effects of Annealing Treatment of Aluminum Substrate on Nanopore Arrangements in Anodic Alumina, J. Mater. Sci. Technol., 2015, 31(7), p 751–758. https://doi.org/10.1016/j.jmst.2014.09.019

    Article  Google Scholar 

  26. C.K. Chung, M.W. Liao, H.C. Chang, and C.T. Lee, Effects of Temperature and Voltage Mode on Nanoporous Anodic Aluminum Oxide Films by One-Step Anodization, Thin Solid Films, 2011, 520(5), p 1554–1558. https://doi.org/10.1016/j.tsf.2011.08.053

    Article  Google Scholar 

  27. J. De Laet, H. Terryn, and J. Vereecken, Development of an Optical Model for Steady State Porous Anodic Films on Aluminium Formed in Phosphoric Acid, Thin Solid Films, Elsevier, 1998, 320(2), p 241–252. https://doi.org/10.1016/s0040-6090(97)00741-4

    Article  Google Scholar 

  28. J. Ferré-Borrull, J. Pallarès, G. Macías, and L.F. Marsal, Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications, Materials, 2014, 7(7), p 5225–5253

    Article  Google Scholar 

  29. L.P. Hernández-Eguía, J. Ferré-Borrull, G. Macias, J. Pallarès, and L.F. Marsal, Engineering Optical Properties of Gold-Coated Nanoporous Anodic Alumina for Biosensing, Nanoscale Res. Lett., 2014, 9(1), p 414. https://doi.org/10.1186/1556-276x-9-414

    Article  Google Scholar 

  30. S. Ono and N. Masuko, The Duplex Structure of Cell Walls of Porous Anodic Films Formed on Aluminum, Corrosion Science, 1992, 33(3), p 503–507. http://www.sciencedirect.com/science/article/pii/0010938X9290078H

  31. X. Hu, Y.J. Pu, Z.Y. Ling, and Y. Li, Coloring of Aluminum Using Photonic Crystals of Porous Alumina with Electrodeposited Ag, Opt. Mater., 2009, 32(2), p 382–386

    Article  Google Scholar 

  32. G.S. Huang, X.L. Wu, Y.F. Mei, X.F. Shao, and G.G. Siu, Strong Blue Emission from Anodic Alumina Membranes with Ordered Nanopore Array, J. Appl. Phys., 2003, 93(1), p 582–585

    Article  Google Scholar 

  33. G.S. Huang, X.L. Wu, L.W. Yang, X.F. Shao, G.G. Siu, and P.K. Chu, Dependence of Blue-Emitting Property on Nanopore Geometrical Structure in Al-Based Porous Anodic Alumina Membranes, Appl. Phys. A Mater. Sci. Process., 2005, 81(7), p 1345–1349

    Article  Google Scholar 

  34. T. Kumeria, M.M. Rahman, A. Santos, J. Ferré-Borrull, L.F. Marsal, and D. Losic, Structural and Optical Nanoengineering of Nanoporous Anodic Alumina Rugate Filters for Real-Time and Label-Free Biosensing Applications, Anal. Chem., 2014, 86(3), p 1837–1844

    Article  Google Scholar 

  35. T. Kumeria, A. Santos, and D. Losic, Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications, Sensors, 2014, 14(7), p 11878–11918. https://doi.org/10.3390/s140711878

    Article  Google Scholar 

  36. A.A. Schilt, Perchloric Acid and Perchlorates, The G. Frederick Smith Chemical Company, DeKalb, 1979

    Google Scholar 

  37. H. Adelkhani, S. Nasoodi, and A.H. Jafari, A Study of the Morphology and Optical Properties of Electropolished Aluminum in the Vis-IR Region, Int. J. Electrochem. Sci., 2009, 4(2), p 238–246

    Google Scholar 

  38. L. George and S. Eric, Destruction of Hazardous Chemicals in the Laboratory, 3rd ed., Wiley, New York, 2012

    Google Scholar 

  39. K.M. Alam, A.P. Singh, S.C. Bodepudi, and S. Pramanik, Fabrication of Hexagonally Ordered Nanopores in Anodic Alumina: An Alternative Pretreatment, Surf. Sci., 2011, 605(3–4), p 441–449

    Article  Google Scholar 

  40. D. Joseph, Aluminum and Aluminum Alloys, 1st ed., ASM International, Materials Park, 2001

    Google Scholar 

  41. W.G. Wood, Metals Handbook, Surface Cleaning Finishing and Coating, Vol 5, American Society of Metals, Materials Park, 1982

  42. D. Mardare and G.I. Rusu, The Influence of Heat Treatment on the Optical Properties of Titanium Oxide Thin Films, Mater. Lett., 2002, 56(3), p 210–214

    Article  Google Scholar 

  43. B. Hugh, ASM Handbook Volume 3—Alloy Phase Diagrams, ASM Handbook, 1992, p 500

  44. R. Ambat, A.J. Davenport, G.M. Scamans, and A. Afseth, Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium, Corros. Sci., 2006, 48(11), p 3455–3471

    Article  Google Scholar 

  45. J. Namahoot, Effect of Deformation on Corrosion of Al-Mn Alloys, Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 2004

  46. ASM International Handbook Committee, Metals Handbook Vol 13 - Corrosion, ASM Handbook, 9th, ASM International, 1992

  47. ASM International, Heat Treating, Vol 4, ASM International, Materials Park, OH, 1991

    Google Scholar 

  48. J.G. Kaufman and E.L. Rooy, Aluminum Alloy Castings Properties, Processes, and Applications, ASM International, Materials Park, OH, 2004

    Google Scholar 

  49. F. Eozenou, C. Antoine, A. Aspart, S. Berry, J.F. Denis, and B. Malki, Efficiency of Electropolishing Versus Bath Composition and Aging: First Results, 2005, p 2–5

  50. M. Buhlert, M. Gartner, M. Modreanu, A. Jitianu, R. Gavrila, A. Awad, and P.J. Plath, Characterization of Electropolished Aluminum Surfaces, Galvanotechnik, 2004, 95, p 1629–1634

    Google Scholar 

  51. R. Pinner, Electroplating and Metal Finishing, Electroplating and Metal Finishing, 1953, 6(11), p 401–410

    Google Scholar 

  52. C.F. Mallinson, P.M. Yates, M.A. Baker, J.E. Castle, A. Harvey, and J.F. Watts, The Localised Corrosion Associated with Individual Second Phase Particles in AA7075-T6: A Study by SEM, EDX, AES, SKPFM and FIB-SEM, Mater. Corros., 2017, (October 2016), p 1–16

  53. S.M. Li, Y.D. Li, Y. Zhang, J.H. Liu, and M. Yu, Effect of Intermetallic Phases on the Anodic Oxidation and Corrosion of 5A06 Aluminum Alloy, International Journal of Minerals, Metallurgy and Materials, 2015, 22(2), p 167–174

    Article  Google Scholar 

  54. O. Lunder and K. Nisancioglu, Effect of Alkaline-Etch Pretreatment on the Pitting Corrosion of Wrought Aluminum, Corrosion, 1988, 44(7), p 414–422

    Article  Google Scholar 

  55. B. Wielage, D. Nickel, G. Alisch, H. Podlesak, and T. Lampke, Effects of Pre-Treatment on the Growth Rate and Morphology of Hard Anodic Films on Aluminium (EN AW-6082), Surf. Coat. Technol., 2007, 202(3), p 569–576

    Article  Google Scholar 

  56. Z. Szklarska-Smialowska, Pitting Corrosion of Aluminum, Corros. Sci., 1998, 1999(41), p 1743–1767

    Google Scholar 

  57. I. Son, H. Nakano, S. Oue, S. Kobayashi, H. Fukushima, and Z. Horita, Effect of Equal-Channel Angular Pressing on Pitting Corrosion of Pure Aluminum, International Journal of Corrosion, 2012, 2012, p 1–9

    Article  Google Scholar 

  58. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, P. Bailey, T.C.Q. Noakes, H. Habazaki, and K. Shimizu, Morphology of Enriched Alloy Layers in an Anodized Al-Cu Alloy, Appl. Surf. Sci., 2002, 205(1–4), p 121–127

    Google Scholar 

  59. Y. Osawa, S. Takamori, T. Kimura, K. Minagawa, and H. Kakisawa, Morphology of Intermetallic Compounds in Al-Si-Fe Alloy and Its Control by Ultrasonic Vibration, Mater. Trans., 2007, 48(9), p 2467–2475. https://doi.org/10.2320/matertrans.f-mra2007874

    Article  Google Scholar 

  60. J.A. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys, Procedia Materials Science, 2012, 1, p 19–33. https://doi.org/10.1016/j.mspro.2012.06.004

    Article  Google Scholar 

  61. G. Ghosh, Aluminium – Iron – Silicon, Iron Systems, Part 1, G. Effenberg and S. Ilyenko, Eds., Landolt-Börnstein, 2006.

  62. Davis Joseph, “Corrosion of Aluminum and Aluminum Alloys,” Davids and Asociates, Ed., (Ohio), ASM International, 1999.

  63. I. Boukerche, S. Djerad, L. Benmansour, L. Tifouti, and K. Saleh, Degradability of Aluminum in Acidic and Alkaline Solutions, Corros. Sci., 2014, 78(January), p 343–352

    Article  Google Scholar 

  64. G.E. Totten and D.S. Mackenzie, Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes, 1st ed., CRC Press, Boca Raton, 2003

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by COLCIENCIAS and Universidad de Antioquia, Colombia, with Contract Number: 0636-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara María Aguilar-Sierra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Sierra, S.M., Echeverría E, F. Improvement of Electropolishing of 1100 Al Alloy for Solar Thermal Applications. J. of Materi Eng and Perform 27, 1387–1395 (2018). https://doi.org/10.1007/s11665-018-3212-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3212-2

Keywords

Navigation