Skip to main content
Log in

Improving Corrosion Resistance of 316L Austenitic Stainless Steel Using ZrO2 Sol-Gel Coating in Nitric Acid Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

In this study, thin-film coating of zirconium oxide (ZrO2) was prepared by sol-gel method and subsequent heat treatment process. The sol was prepared by controlled hydrolysis of zirconium tetrapropoxide using acetic acid and ethanol/acetylacetone mixture as catalyst and chelating agent, respectively, and finally deposited onto the 316L austenitic stainless steel (316L SS) using dip coating method in order to improve its corrosion resistance in nitric acid medium. The composition, structure, and morphology of the coated surface were investigated by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The obtained results from XRD and FTIR state the formation of tetragonal and monoclinic ZrO2 phase. Also, the obtained results from surface morphology investigation by SEM and AFM indicate the formation of smooth, homogeneous and uniform coatings on the steel substrate. Then, the corrosion behavior of stainless steel was investigated in a 1 and 10 M nitric acid solutions using electrochemical impedance spectroscopy and linear polarization test. The obtained results from these tests for ZrO2-coated specimens indicated a considerable improvement in the corrosion resistance of 316L stainless steel by an increase in corrosion potential and transpassive potential, and a decrease in passive current density and corrosion current density. The decrease in passive current density in both the concentration of solutions was two orders of magnitude from bare to coated specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Yang and D.D. Macdonald, Theoretical and Experimental Studies of the Pitting of Type 316L Stainless Steel in Borate Buffer Solution Containing Nitrate Ion, Electrochim. Acta, 2007, 52(5), p 1871–1879

    Article  Google Scholar 

  2. K. Ramana, T. Anita, S. Mandal, S. Kaliappan, H. Shaikh, P. Sivaprasad et al., Effect of Different Environmental Parameters on Pitting Behavior of AISI, type 316L Stainless Steel: Experimental Studies and Neural Network Modeling, Mater. Des., 2009, 30(9), p 3770–3775

    Article  Google Scholar 

  3. U.K. Mudali, R. Dayal, and J. Gnanamoorthy, Corrosion Studies on Materials of Construction for Spent Nuclear Fuel Reprocessing Plant Equipment, J. Nucl. Mater., 1993, 203(1), p 73–82

    Article  Google Scholar 

  4. S. Haupt and H.-H. Strehblow, A Combined Surface Analytical and Electrochemical Study of the Formation of Passive Layers on FeCr Alloys in 0.5 M H2SO4, Corros. Sci., 1995, 37(1), p 43–54

    Article  Google Scholar 

  5. R. Robin, F. Miserque, and V. Spagnol, Correlation Between Composition of Passive Layer and Corrosion Behavior of High Si-Containing Austenitic Stainless Steels in Nitric Acid, J. Nucl. Mater., 2008, 375(1), p 65–71

    Article  Google Scholar 

  6. V. Bague, S. Chachoua, Q. Tran, and P. Fauvet, Determination of the Long-Term Intergranular Corrosion Rate of Stainless Steel in Concentrated Nitric Acid, J. Nucl. Mater., 2009, 392(3), p 396–404

    Article  Google Scholar 

  7. M. Mayuzumi, J. Ohta, and K. Kako, Corrosion Behavior of High-Purity Fe-Cr-Ni Alloys in the Transpassive Condition, Corrosion., 2000, 56(1), p 70–79

    Article  Google Scholar 

  8. A. Desestret, I. Epelboin, M. Froment, and P. Guiraldenq, Sur la comparaison des facies D’attaque electrolytique et thermique D’aciers inoxydables austenitiques a teneur variable En Si, Corros. Sci., 1968; 8(4):225IN9229–228IN12234

  9. A. Balamurugan, S. Rajeswari, G. Balossier, A. Rebelo, and J. Ferreira, Corrosion Aspects of Metallic Implants—An Overview, Mater. Corros., 2008, 59(11), p 855–869

    Article  Google Scholar 

  10. C. Bayram, A.K. Mizrak, S. Aktürk, H. Kurşaklioğlu, A. Iyisoy, A. Ifran et al., In Vitro Biocompatibility of Plasma-Aided Surface-Modified 316L Stainless Steel for Intracoronary Stents, Biomed. Mater., 2010, 5(5), p 055007

    Article  Google Scholar 

  11. Y. Dianran, H. Jining, W. Jianjun, Q. Wanqi, and M. Jing, The Corrosion Behaviour of a Plasma Spraying Al2O3 Ceramic Coating in Dilute HC1 Solution, Surf. Coat. Technol., 1997, 89(1–2), p 191–195

    Article  Google Scholar 

  12. K. Ramachandran, V. Selvarajan, P. Ananthapadmanabhan, and K. Sreekumar, Microstructure, Adhesion, Microhardness, Abrasive Wear Resistance and Electrical Resistivity of the Plasma Sprayed Alumina and Alumina–Titania Coatings, Thin Solid Films, 1998, 315(1), p 144–152

    Article  Google Scholar 

  13. A. Afrasiabi, M. Saremi, and A. Kobayashi, A Comparative Study on Hot Corrosion Resistance of Three Types of Thermal Barrier Coatings: YSZ, YSZ + Al 2 O 3 and YSZ/Al 2 O 3, Mater. Sci. Eng. A, 2008, 478(1), p 264–269

    Article  Google Scholar 

  14. K. Meinert, C. Uerpmann, J. Matschullat, and G. Wolf, Corrosion and Leaching of Silver Doped Ceramic IBAD Coatings on SS 316L Under Simulated Physiological Conditions, Surf. Coat. Technol., 1998, 103, p 58–65

    Article  Google Scholar 

  15. Z. Zhou, E. Chalkova, S. Lvov, and P. Chou, Hydrothermal Deposition of Zirconia Coatings on Pre-oxidized BWR Structural Materials, J. Nucl. Mater., 2008, 378(3), p 229–237

    Article  Google Scholar 

  16. K. Rodrigo, J. Knudsen, N. Pryds, J. Schou, and S. Linderoth, Characterization of Yttria-Stabilized Zirconia Thin Films Grown by Pulsed Laser Deposition (PLD) on Various Substrates, Appl. Surf. Sci., 2007, 254(4), p 1338–1342

    Article  Google Scholar 

  17. S. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritala et al., Crystallization in Hafnia-and Zirconia-Based Systems, Physica status solidi, 2004, 241(10), p 2268–2278

    Article  Google Scholar 

  18. M. Putkonen and L. Niinistö, Zirconia Thin Films by Atomic Layer Epitaxy. A Comparative Study on the uSe of Novel Precursors with Ozone, J. Mater. Chem., 2001, 11(12), p 3141–3147

    Article  Google Scholar 

  19. C. Guizard, N. Cygankiewicz, A. Larbot, and L. Cot, Sol-Gel Transition in Zirconia Systems Using Physical and Chemical Processes, J. Non-Cryst. Solids, 1986, 82(1–3), p 86–91

    Article  Google Scholar 

  20. D.A. Ward and E.I. Ko, Use Of Preformed Sols in The Sol-Gel Preparation of Zirconia, Langmuir, 1995, 11(1), p 369–372

    Article  Google Scholar 

  21. T.A. Kuriakose, S.N. Kalkura, M. Palanichamy, D. Arivuoli, K. Dierks, G. Bocelli et al., Synthesis of Stoichiometric Nano Crystalline Hydroxyapatite by Ethanol-Based Sol–Gel Technique at Low Temperature, J. Cryst. Growth, 2004, 263(1), p 517–523

    Article  Google Scholar 

  22. C.J. Brinker and G.W. Scherer, Sol-Gel Science, Academic Press, San Diego, 1990, p 2

    Google Scholar 

  23. M. Norouzia and A.A. Garekani, Corrosion Protection by Zirconia-Based Thin Films Deposited by a Sol–Gel Spin Coating Method, Ceram. Int., 2014, 40(2), p 2857–2861

    Article  Google Scholar 

  24. I. Bačić, H.O. Ćurković, L. Ćurković, V. Mandić, and Z. Šokčević, Corrosion Protection of AISI, 316L Stainless Steel with the Sol-Gel Yttria Stabilized ZrO2 Films: Effects of Sintering Temperature and Doping, Int. J. Electrochem. Sci., 2016, 11(11), p 9192–9205

    Google Scholar 

  25. A. Bu, J. Wang, J. Zhang, J. Bai, Z. Shi, Q. Liu, and G. Ji, Corrosion Behavior of ZrO2–TiO2 Nanocomposite Thin Films Coating on Stainless Steel Through Sol–Gel Method, J. Sol-Gel. Sci. Technol., 2017, 81(3), p 633–638

    Article  Google Scholar 

  26. S.J. Kang and H.T. Kima, Sol–gel Synthesis of Photoactive Zirconia–Titania from Metal Salts and Investigation of Their Photocatalytic Properties in the Photodegradation of Methylene Blue, Powder Technol., 2014, 258(8), p 99–109

    Google Scholar 

  27. D. Pamu, K. Sudheendran, M.G. Krishna, and K.C.J. Raju, Dielectric Properties of Ambient Temperature Grown Nanocrystalline ZrTiO4 Thin Films Using DC Magnetron Sputtering, Mater. Sci. Eng., B, 2010, 168(1), p 208–213

    Article  Google Scholar 

  28. A. Huang and P.K. Chu, Microstructural Improvement of Sputtered ZrO 2 Thin Films by Substrate Biasing, Mater. Sci. Eng., B, 2005, 121(3), p 244–247

    Article  Google Scholar 

  29. G. Štefanić, S. Popović, and S. Musić, Influence of Cr 2 O 3 on the Stability of Low Temperature t-ZrO 2, Mater. Lett., 1998, 36(5), p 240–244

    Google Scholar 

  30. S. Tiwari, J. Adhikary, T. Singh, and R. Singh, Preparation and Characterization of Sol–Gel Derived Yttria Doped Zirconia Coatings on AISI, 316L, Thin Solid Films, 2009, 517(16), p 4502–4508

    Article  Google Scholar 

  31. H. Wang, G. Li, Y. Xue, and L. Li, Hydrated Surface Structure and its Impacts on the Stabilization of t-ZrO 2, J. Solid State Chem., 2007, 180(10), p 2790–2797

    Article  Google Scholar 

  32. K. Izumi, M. Murakami, T. Deguchi, A. Morita, N. Tohge, and T. Minami, Zirconia Coating on Stainless Steel Sheets from Organozirconium Compounds, J. Am. Ceram. Soc., 1989, 72(8), p 1465–1468

    Article  Google Scholar 

  33. P. Pouilleau, D. Devillier, F. Garrido, S. Durand-Vidal, and E. Mah, Structure and Composition of Passive Titanium Oxide Films, Mater. Sci. Eng., B, 1997, 47, p 235–243

    Article  Google Scholar 

  34. C. Liu, Q. Bi, A. Leyland, and A. Matthews, An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II.: EIS Interpretation of Corrosion Behavior, Corros. Sci., 2003, 45(6), p 1257–1273

    Article  Google Scholar 

  35. A.R. Shankar and U.K. Mudali, Refractory Metal Coatings on Titanium to Improve Corrosion Resistance in Nitric Acid Medium, Surf. Coat. Technol., 2013, 235(1), p 155–164

    Article  Google Scholar 

  36. A. Takarada, T. Suzuki, K. Kanda, M. Niibe, M. Nakanod, N. Ohtake, and H. Akasaka, Structural Dependence of Corrosion Resistance of Amorphous Carbon Films Against Nitric Acid, Diam. Relat. Mater., 2015, 51(1), p 49–54

    Article  Google Scholar 

  37. S. Ningshen, U.K. Mudali, R. Krishnan, and B. Raj, Corrosion Behavior of Zr-Based Metallic Glass Coating on Type 304L Stainless Steel by Pulsed Laser Deposition Method, Surf. Coat. Technol., 2011, 205(15), p 3961–3966

    Article  Google Scholar 

  38. N. Padhy, S. Kamal, R. Chandra, U.K. Mudali, and B. Raj, Corrosion Performance of TiO2 Coated Type 304L Stainless Steel in Nitric Acid Medium, Surf. Coat. Technol., 2010, 204(16), p 2782–2788

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to gratefully acknowledge Mrs. Saremi for her assistance in the electrochemical laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Kazazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazazi, M., Haghighi, M., Yarali, D. et al. Improving Corrosion Resistance of 316L Austenitic Stainless Steel Using ZrO2 Sol-Gel Coating in Nitric Acid Solution. J. of Materi Eng and Perform 27, 1093–1102 (2018). https://doi.org/10.1007/s11665-018-3202-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3202-4

Keywords

Navigation