Skip to main content
Log in

Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young’s modulus, toughness, flexural strength and flexural modulus by ~ 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of ~ 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tanδ), respectively, at its glass transition temperature. The fiber–matrix interaction was studied using a Cole–Cole plot analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, and L. Mezzo, Interfacial Shear Strength of a Glass Fiber/Epoxy Bonding in Composites Modified with Carbon Nanotubes, Compos. Sci. Technol., 2010, 70(9), p 1346–1352

    Article  Google Scholar 

  2. N. Yamamoto, J.A. Hart, E.J. Garcia, S.S. Wicks, H.M. Duong, and A.H. Slocum, High-Yield Growth and Morphology Control of Aligned Carbon Nanotubes on Ceramic Fibers for Multifunctional Enhancement of Structural Composites, Carbon, 2009, 47(3), p 551–560

    Article  Google Scholar 

  3. F.H. Su, Z.Z. Zhang, and W.M. Liu, Study on the Friction and Wear Properties of Glass Fabric Composites Filled with Nano and Micro Particles Under Different Conditions, Mater. Sci. Eng., A, 2005, 392(1–2), p 359–365

    Article  Google Scholar 

  4. Z.Z. Zhang, F.H. Su, K. Wang, W. Jiang, X.H. Men, and W.M. Liu, Study on the Friction and Wear Properties of Carbon Fabric Composites Reinforced with Micro and Nano Particles, Mater. Sci. Eng., A, 2005, 404(1–2), p 251–258

    Article  Google Scholar 

  5. S.A. Meguid and Y. Sun, On the Tensile and Shear Strength of Nano-Reinforced Composite Interfaces, Mater. Des., 2004, 25(4), p 289–296

    Article  Google Scholar 

  6. F. Kachold and R. Singer, Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting, J. Mater. Eng. Perf., 2016, 25(8), p 3128–3133

    Article  Google Scholar 

  7. F. Cai, F. Gao, S. Pant, X. Huang, and Q. Yang, Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium, J. Mater. Eng. Perf., 2016, 25(1), p 290–296

    Article  Google Scholar 

  8. R.M. Rocha, C.A.A. Cairo, and M.L.A. Graca, Formation of Carbon Fiber-Reinforced Ceramic Matrix Composites with Polysiloxane/Silicon Derived Matrix, Mater. Sci. Eng., 2006, 437(2), p 268–273

    Article  Google Scholar 

  9. Y. Arao, S. Yumitori, H. Suzuki, T. Tanaka, K. Tanaka, and T. Katayama, Mechanical Properties of Injection-Molded Carbon Fiber/Polypropylene Composites Hybridized with Nanofillers, Compos. Part A, 2013, 55, p 19–26

    Article  Google Scholar 

  10. Y. Geng, M.Y. Liu, J. Li, X.M. Shi, and J.K. Kim, Effects of Surfactant Treatment on Mechanical and Electrical Properties of CNT/Epoxy Nanocomposites, Compos. Part A, 2008, 39(12), p 1876–1883

    Article  Google Scholar 

  11. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon Nanotube-Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties, Prog. Polym. Sci., 2010, 35(3), p 357–401

    Article  Google Scholar 

  12. C.E. Hong, J.H. Lee, P. Kalappa, and S.G. Advani, Effects of Oxidative Conditions on Properties of Multi-walled Carbon Nanotubes in Polymer Nanocomposites, Compos. Sci. Technol., 2007, 67(6), p 1027–1034

    Article  Google Scholar 

  13. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, Onestep Ionic-Liquid-Assisted Electrochemical Synthesis of Ionicliquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater., 2008, 18, p 1518–1525

    Article  Google Scholar 

  14. L. Wang, J. Hong, and G. Chen, Comparison Study of Graphite Nanosheets and Carbon Black as Fillers for High Density Polyethylene, Polym. Eng. Sci., 2010, 50(11), p 2176–2181

    Article  Google Scholar 

  15. R. Baptista, A. Mendão, M. Guedes, and R. Marat-Mendesa, An Experimental Study on Mechanical Properties of Epoxy-Matrix Composites Containing Graphite Filler, Proc. Struct. Integr., 2016, 1, p 074–081

    Article  Google Scholar 

  16. K. Kalaitzidou, H. Fukushima, and L.T. Drzal, A New Compounding Method for Exfoliated Graphite-Polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold, Compos. Sci. Technol., 2007, 67(10), p 2045–2051

    Article  Google Scholar 

  17. S. Park and S.R. Ruoff, Chemical Methods for the Production of Graphenes, Nat. Nanotechnol., 2009, 4, p 217–224

    Article  Google Scholar 

  18. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-Based Composite Materials, Nature, 2006, 442, p 282–286

    Article  Google Scholar 

  19. C.Y. Lee, J.H. Bae, T.Y. Kim, S.H. Chang, and S.Y. Kim, Using Silane-Functionalized Graphene Oxides for Enhancing the Interfacial Bonding Strength of Carbon/Epoxy Composites, Compos. Part A, 2015, 75, p 11–17

    Article  Google Scholar 

  20. A.K. Pathak, M. Borah, A. Gupta, T. Yokozeki, and S.R. Dhakate, Improved Mechanical Properties of Carbon Fiber/Graphene Oxide/Epoxy Hybrid Composites, Compos. Sci. Technol., 2016, 135, p 28–38

    Article  Google Scholar 

  21. P. He, B. Huang, L. Liu, Q. Huang, and T. Chen, Preparation of Multiscale Graphene Oxide-Carbon Fabric and Its Effect on Mechanical Properties of Hierarchical Epoxy Resin Composite, Polym. Compos., 2016, 37(5), p 1515–1522

    Article  Google Scholar 

  22. X. Zhang, X. Fan, C. Yan, H. Li, Y. Zhu, X. Li, and L. Yu, Interfacial Microstructure and Properties of Carbon Fiber Composites Modified with Graphene Oxide, ACS Appl. Mater. Interfaces., 2012, 4(3), p 1543–1552

    Article  Google Scholar 

  23. T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, and J.H. Lee, A Green Approach for the Reduction of Graphene Oxide by Wild Carrot Root, Carbon, 2012, 50(3), p 914–921

    Article  Google Scholar 

  24. H.K. Jeong, Y.P. Lee, R.J. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, and Y.H. Lee, Evidence of Graphitic AB Stacking Order of Graphite Oxides, J. Am. Chem. Soc., 2008, 130(4), p 1362–1366

    Article  Google Scholar 

  25. D.C. Davis, J.W. Wilkerson, J. Zhu, and D.O.O. Ayewah, Improvements in Mechanical Properties of a Carbon Fiber Epoxy Composite Using Nanotube Science and Technology, Compos. Struct., 2010, 92(11), p 2653–2662

    Article  Google Scholar 

  26. J.M.F. Paiva, E. Frollini, and J. Macromol, Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites, Mater. Eng., 2006, 291(4), p 405–417

    Google Scholar 

  27. S. Ganguli, A.K. Roy, and D.P. Anderson, Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites, Carbon, 2008, 46(5), p 806–817

    Article  Google Scholar 

  28. N.G. McCrum, B. Read, and G. Williams, Anelastic & Dielectric Effects in Polymer Solids, Wiley, New York, 1967

    Google Scholar 

  29. N. Hameed, P.A. Sreekumar, B. Francis, W. Yang, and S. Thomas, Morphology, Dynamic Mechanical and Thermal Studies on Poly(styrene-co-acrylonitrile) Modified Epoxy Resin/Glass Fibre Composites, Compos. Part A, 2007, 38(12), p 2422–2432

    Article  Google Scholar 

  30. H. Kaddami, A. Dufresne, B. Khelifi, A. Bendahou, M. Taourirte, M. Raihane, N. Issartel, H. Sautereau, J.F. Gerard, and N. Sami, Short Palm Tree Fibres-Thermoset Matrices Composites, Compos. Part A, 2006, 37(9), p 1413–1422

    Article  Google Scholar 

  31. S. Chhetri, P. Samanta, N.C. Murmu, S.K. Srivastava, and T. Kuila, Effect of Dodecyal Amine Functionalized Graphene on the Mechanical and Thermal Properties of Epoxy-Based Composites, Polym. Eng. Sci., 2016, 56(11), p 1221–1228

    Article  Google Scholar 

  32. M. Jawaid and H.P.S. Khalil, Effect of Layering Pattern on the Dynamic Mechanical Properties and Thermal Degradation of Oil Palm-Jute Fiber Reinforced Epoxy Hybrid Composites, Bio-Resources, 2011, 6(3), p 2309–2322

    Google Scholar 

  33. G. Agarwal, A. Patnaik, and R.K. Sharma, Tribology Material, Parametric Optimization of Three Body Abrasive Wear Behaviour of Long and Short Carbon Fiber Reinforced Epoxy Composites, Tribol. Mater. Surf. Interfaces, 2013, 7(3), p 150–160

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director of CSIR-CMERI. The authors are also thankful to the Council of Scientific and Industrial Research, New Delhi, India, for funding MEGA Institutional Project (ESC0112/RP-II/T2.3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pranab Samanta or Tapas Kuila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adak, N.C., Chhetri, S., Kim, N.H. et al. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite. J. of Materi Eng and Perform 27, 1138–1147 (2018). https://doi.org/10.1007/s11665-018-3201-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3201-5

Keywords

Navigation