Skip to main content
Log in

Microstructure, Chemical Composition and Local Corrosion Behavior of a Friction Stud Welding Joint

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, friction stud welding technology was used to join a stud and base metal, which were composed of X65 steel. The scanning vibrating electrode technique (SVET) and localized electrochemical impedance spectroscopy (LEIS) were used to investigate the localized corrosion behaviors of the welded joint. Scanning electron microscopy, metallographic microscopy and a micro-hardness tester were used to observe the microstructure and measure the hardness of the welded sample. Raman spectrometry and energy-dispersive spectrometry were used to measure the composition of the weldment before and after corrosion, respectively. The results show that there are the maximum micro-hardness and the densest microstructure in the welded zone compared with the other zones. In addition, α-Fe2O3 and Fe3O4 are present in the welded zone. The SVET and LEIS data indicate that the welded zone has the lowest current density and the largest impedance due to the presence of iron oxides and the densest microstructure, thus showing the excellent corrosion resistance. The relationship among microstructure, micro-hardness, chemical composition and local electrochemical behavior was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Yan, Y. Nie, Z. Zhu, H. Chen, G. Gou, J. Yu, and G. Wang, Characteristics of Microstructure and Fatigue Resistance of Hybrid Fiber Laser-MIG Welded Al-Mg Alloy Joints, Appl. Surf. Sci., 2014, 298, p 12-18

    Article  Google Scholar 

  2. N. Rajesh Jesudoss Hynes, P. Nagaraj, R. Palanichamy, C.A.K. Arumugham, and J. Angela Jennifa Sujana, Numerical Simulation of Heat Flow in Friction Stud Welding of Dissimilar Metals, Arab. J. Sci. Eng., 2014, 39, p 3217-3224

    Article  Google Scholar 

  3. M.B. Uday, M.N.A. Fauzi, H. Zuhailawati, and A.B. Ismail, Thermal Analysis of Friction Welding Process in Relation to the Welding of YSZ-Alumina Composite and 6061 Aluminum Alloy, Appl. Surf. Sci., 2012, 258, p 8264-8272

    Article  Google Scholar 

  4. D. Wang, B.L. Xiao, Q.Z. Wang, and Z.Y. Ma, Evolution of the Microstructure and Strength in the Nugget Zone of Friction Stir Welded SiCp/Al-Cu-Mg Composite, J. Mater. Sci. Technol., 2014, 30, p 54-60

    Article  Google Scholar 

  5. M. Pareek, A. Polar, F. Rumiche, and J.E. Indacochea, Metallurgical Evaluation of AZ31B-H24 Magnesium Alloy Friction Stir Welds, J. Mater. Eng. Perform., 2007, 16, p 655-662

    Article  Google Scholar 

  6. N.R.J. Hynes, P. Nagaraj, and J.A.J. Sujana, Ultrasonic Evaluation of Friction Stud Welded AA 6063/AISI, 1030 Steel Joints, Mater. Des., 2014, 62, p 118-123

    Article  Google Scholar 

  7. N.R.J. Hynes, P. Nagaraj, and J.A.J. Sujana, Investigation on Joining of Aluminum and Mild Steel by Friction Stud Welding, Adv. Mater. Manuf. Proce., 2012, 27, p 1409-1413

    Article  Google Scholar 

  8. N.R.J. Hynes, P. Nagaraj, R. Tharmaraj, Thermal Analysis on Joining of Dissimilar Metals by Friction Stud Welding. Adv. Mater. Res. 984-985, 592-595,10, 6107-6110 (2014).

  9. N.R.J. Hynes, P. Nagaraj, and R. Tharmaraj, Prediction of Thermal Profile During Friction Stud Welding of Aluminium-Mild Steel Joints, Int. J. Appl. Eng. Res., 2015, 10(8), p 6107-6110

    Google Scholar 

  10. Y.G. Xu, X.D. Jiao, C.F. Zhou, H. Gao, and B. Di, The Influence of the Rotating Speed on the Mechanical Performance of the Friction Stud Weldment, Elec. Wel. Mach., 2015, 45, p 23-26

    Google Scholar 

  11. T. Nishida, T. Ogura, M. Fujimoto, and A. Hirose, Microstructure and Mechanical Property of 5000 Series Aluminum Stud Joint with Zinc Insert Using Friction Welding, J. Jpn. Inst. Light Metals, 2011, 52, p 960-966

    Google Scholar 

  12. M. Kimura, M. Kusaka, and K. Kaizu, Effect of Friction Welding Condition on Joint Properties of Austenitic Stainless Steel Joints by Friction Stud Welding, Q. J. Jpn. Weld. Soc., 2016, 34, p 102-111

    Article  Google Scholar 

  13. A. Pritzel dos Santos, S.M. Manhabosco, J.S. Rodrigues, and L.F.P. Dick, Comparative Study of the Corrosion Behavior of Galvanized, Galvannealed and Zn55Al Coated Interstitial Free Steels, Surf. Coat. Technol., 2015, 279, p 150-160

    Article  Google Scholar 

  14. A. de Vooys and H. van der Weijde, Investigating Cracks and Crazes on Coated Steel with Simultaneous SVET and EIS, Prog. Org. Coat., 2011, 71, p 250-255

    Article  Google Scholar 

  15. C. Zhang and Y.F. Cheng, Corrosion of Welded X100 Pipeline Steel in a Near-Neutral pH Solution, J. Mater. Eng. Perform., 2010, 19, p 834-840

    Article  Google Scholar 

  16. V. Upadhyay and D. Battocchi, Localized Electrochemical Characterization of Organic Coatings: A Brief Review, Prog. Org. Coat., 2016, 99, p 365-377

    Article  Google Scholar 

  17. D. Sidane, E. Bousquet, O. Devos, M. Puiggali, M. Touzet, V. Vivier, and A. Poulon-Quintin, Local Electrochemical Study of Friction Stir Welded Aluminum Alloy Assembly, J. Electroanal. Chem., 2015, 737, p 206-211

    Article  Google Scholar 

  18. P. de Lima-Neto, J.P. Farias, L.F.G. Herculano, H.C. de Miranda, W.S. Araújo, J.-B. Jorcin, and N. Pébère, Determination of the Sensitized Zone Extension in Welded AISI, 304 Stainless Steel Using Non-destructive Electrochemical Techniques, Corros. Sci., 2008, 50, p 1149-1155

    Article  Google Scholar 

  19. S. Li and L.H. Hihara, Aerosol Salt Particle Deposition on Metals Exposed to Marine Environments: A Study Related to Marine Atmospheric Corrosion, J. Electrochem. Soc., 2014, 161, p C268-C275

    Article  Google Scholar 

  20. J. Moon, H.-Y. Ha, and T.-H. Lee, Corrosion Behavior in High Heat Input Welded Heat-Affected Zone of Ni-Free High-Nitrogen Fe-18Cr-10Mn-N Austenitic Stainless Steel, Mater. Charact., 2013, 82, p 113-119

    Article  Google Scholar 

  21. Y.P. Yang, Developing Friction Stir Welding Process Model for ICME Application, J. Mater. Eng. Perform., 2015, 24, p 202-208

    Article  Google Scholar 

  22. G.M. Xie, N. University, I.O. Metal, and C.A.O. Sciences, Effect of Rotation Rate on Microstructures and Mechanical Properties of FSW Mg-Zn-Y-Zr Alloy Joints, J. Mater. Sci. Technol., 2011, 27, p 1157-1164

    Article  Google Scholar 

  23. V. Firouzdor and S. Kou, Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed, Metall. Mater. Trans. A, 2010, 41, p 2914-2935

    Article  Google Scholar 

  24. L. Chen, H. Tan, Z. Wang, J. Li, and Y. Jiang, Influence of Cooling Rate on Microstructure Evolution and Pitting Corrosion Resistance in the Simulated Heat-Affected Zone of 2304 Duplex Stainless Steels, Corros. Sci., 2012, 58, p 168-174

    Article  Google Scholar 

  25. T. Le Jolu, T.F. Morgeneyer, A. Denquin, M. Sennour, A. Laurent, J. Besson, and A.-F. Gourgues-Lorenzon, Microstructural Characterization of Internal Welding Defects and Their Effect on the Tensile Behavior of FSW Joints of AA2198 Al-Cu-Li Alloy, Metall. Mater. Trans. A, 2014, 45, p 5531-5544

    Article  Google Scholar 

  26. M.I. Costa, D. Verdera, M.T. Vieira, and D.M. Rodrigues, Surface Enhancement of Cold Work Tool Steels by Friction Stir Processing with a Pinless Tool, Appl. Surf. Sci., 2014, 296, p 214-220

    Article  Google Scholar 

  27. C. Garcia, F. Martin, P. de Tiedra, Y. Blanco, and M. Lopez, Pitting Corrosion of Welded Joints of Austenitic Stainless Steels Studied by Using an Electrochemical Minicell, Corros. Sci., 2008, 50, p 1184-1194

    Article  Google Scholar 

  28. M.G. Pujar, R.K. Dayal, T.P.S. Gill, and S.N. Malhotra, Evaluation of Microstructure and Electrochemical Corrosion Behavior of Austenitic 316 Stainless Steel Weld Metals with Varying Chemical Compositions, J. Mater. Eng. Perform., 2005, 14, p 327-342

    Article  Google Scholar 

  29. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion During a Quarter of a Century, Corros. Sci., 1994, 36, p 283-299

    Article  Google Scholar 

  30. A. Raman, B. Kuban, and A. Razvan, The Application of Infrared Spectroscopy to the Study of Atmospheric Rust Systems—I. Standard Spectra and Illustrative Applications to Identify Rust Phases in Natural Atmospheric Corrosion Products, Corros. Sci., 1991, 32, p 1295-1306

    Article  Google Scholar 

  31. T. Balusamy and T. Nishimura, In-situ Monitoring of Local Corrosion Process of Scratched Epoxy Coated Carbon Steel in Simulated Pore Solution Containing Varying Percentage of Chloride Ions by Localized Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2016, 199, p 305-313

    Article  Google Scholar 

  32. Y.F. Cheng and J.L. Luo, Electronic Structure and Pitting Susceptibility of Passive Film on Carbon Steel, Electrochim. Acta, 1999, 44, p 2947-2957

    Article  Google Scholar 

  33. Y. Savguira, T.H. North, and S.J. Thorpe, Effect of Grain Size and Residual Stress on the Corrosion Resistance of Friction Stir Spot Welded AZ31B Joints, Mater. Corros., 2016, 67, p 1068-1074

    Article  Google Scholar 

  34. Y. Chen, H. Ding, J.-Z. Li, J.-W. Zhao, M.-J. Fu, and X.-H. Li, Effect of Welding Heat Input and Post-Welded Heat Treatment on Hardness of Stir Zone for Friction Stir-Welded 2024-T3 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25, p 2524-2532

    Article  Google Scholar 

  35. E. Bousquet, A. Poulon-Quintin, M. Puiggali, O. Devos, and M. Touzet, Relationship Between Microstructure, Microhardness and Corrosion Sensitivity of an AA 2024-T3 Friction Stir Welded Joint, Corros. Sci., 2011, 53, p 3026-3034

    Article  Google Scholar 

  36. H. Zhang, D. Wang, P. Xue, L.H. Wu, D.R. Ni, and Z.Y. Ma, Microstructural Evolution and Pitting Corrosion Behavior of Friction Stir Welded Joint of High Nitrogen Stainless Steel, Mater. Des., 2016, 110, p 802-810

    Article  Google Scholar 

  37. D. Wang, H. Liang, P. Tao, K. Zhang, S. Song, Y. Liu, X. Xia, R. Shen, and G. Du, Crack-Free Ultraviolet AlGaN/GaN Distributed Bragg Reflectors Grown by MOVPE on 6H-SiC(0 0 0 1), Superlattices Microstruct., 2014, 70, p 54-60

    Article  Google Scholar 

  38. H. Sarlak, M. Atapour, and M. Esmailzadeh, Corrosion Behavior of Friction Stir Welded Lean Duplex Stainless Steel, Mater. Des., 2015, 66, p 209-216

    Article  Google Scholar 

Download references

Acknowledgments

The present work is financially supported by the Fundamental Research Funds for the Central Universities (xjj2017163), the key project of Shaanxi province Science and Technology Department (2017ZDXM-GY-115), China Scholarship Council (No. 201708110028) and Graduated Innovation Project of the Beijing Institute of Petrochemical Technology (16033981001/102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhong Gu or Hui Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Gu, Y., Gao, H. et al. Microstructure, Chemical Composition and Local Corrosion Behavior of a Friction Stud Welding Joint. J. of Materi Eng and Perform 27, 666–676 (2018). https://doi.org/10.1007/s11665-018-3182-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3182-4

Keywords

Navigation