Advertisement

Synthesis and Characterization of Silicon Nanowires by Electroless Etching

  • Rabina Bhujel
  • Umesh Rizal
  • Amit Agarwal
  • Bhabani S. Swain
  • Bibhu P. Swain
Article

Abstract

Silicon nanowires (SiNWs) were synthesized by two-step electroless etching of p-type Si (100) wafer and characterized by field emission scanning electron microscopy, UV–Vis spectroscopy, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The vibrational signature at 1108 and 2087 cm−1 confirmed SiNWs were passivated by both oxygen and hydrogen atoms. Raman peak at 517 cm−1 indicated crystalline SiNWs with tailing toward redshift due to Fano effect. The Si(2p) and Si(2s) core orbital spectra of SiNWs were found at 99.8 and 150.5 eV, respectively. Moreover, the reflection of SiNWs is minimized to ~ 1 to 5% in the 650-nm wavelength.

Keywords

FESEM FTIR Raman silicon nanowires XPS 

Notes

Acknowledgment

The financial support from T.M.A Pai and Vasanti Pai Endowment fund is acknowledged. One of the authors (Ms. Rabina Bhujel) acknowledges the financial support for the above-mentioned project.

References

  1. 1.
    X. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Lieber, Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices, Nature, 2001, 409, p 66–69CrossRefGoogle Scholar
  2. 2.
    A.I. Hochbaum, R. Fan, R. He, and P. Yang, Controlled Growth of Si Nanowire Arrays for Device Integration, Nano Lett., 2005, 5, p 457–460CrossRefGoogle Scholar
  3. 3.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources, Nature, 2007, 449, p 885–889CrossRefGoogle Scholar
  4. 4.
    T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S.H. Christiansen, Silicon Nanowire-Based Solar Cells, Nanotechnology, 2008, 19, p 295203CrossRefGoogle Scholar
  5. 5.
    B. Marsen and K. Sattler, Nanostructured materials for magnetoelectronics, Vol 60, Springer, Berlin, 1999, p 11593Google Scholar
  6. 6.
    I. Lombardi, A.I. Hochbaum, P. Yang, C. Carraro, and R. Maboudian, Synthesis of High Density, Size-Controlled Si Nanowire Arrays via Porous Anodic Alumina Mask, Chem. Mater., 2006, 18, p 988–991CrossRefGoogle Scholar
  7. 7.
    A. Colli, S. Hofmann, A. Fasoli, A.C. Ferrari, C. Ducati, R.E. Dunin-Borkowski, and J. Robertson, Synthesis and Optical Properties of Silicon Nanowires Grown by Different Methods, Appl. Phys. A, 2006, 85, p 247–253CrossRefGoogle Scholar
  8. 8.
    B.S. Swain, B.P. Swain, and N.M. Hwang, Chemical Surface Passivation of Silicon Nanowires Grown by APCVD, Curr. Appl. Phys., 2010, 10, p S439–S442CrossRefGoogle Scholar
  9. 9.
    Y. Cui, X.F. Duan, J.T. Hu, and C.M.J. Lieber, Doping and Electrical Transport in Silicon Nanowires, Phys. Chem. B, 2000, 104, p 5213–5216CrossRefGoogle Scholar
  10. 10.
    S.Y. Jeong, J.Y. Kim, H.D. Yang, B.N. Yoon, S.H. Choi, H.K. Kang, C.W. Yang, and Y.H. Lee, Synthesis of Silicon Nanotubes on Porous Alumina Using Molecular Beam Epitaxy, Adv. Mater., 2003, 15, p 1172–1176CrossRefGoogle Scholar
  11. 11.
    H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, and Y. Feng, Growth of Si Nanowires by Thermal Evaporation, Nanotechnology, 2005, 16, p 417–421CrossRefGoogle Scholar
  12. 12.
    W. Jevasuwan, K. Nakajima, Y. Sugimoto, and N. Fukata, Metal-Catalyzed Electroless Etching and Nanoimprinting Silicon Nanowire-Based Solar Cells: Silicon Nanowire Defect Reduction and Efficiency Enhancement by Two-Step H2 Annealing, Jpn. J. Appl. Phys., 2016, 55, p 065001CrossRefGoogle Scholar
  13. 13.
    X. Yu, X. Shen, X. Mu, J. Zhang, B. Sun, L. Zeng, L. Yang, Y. Wu, H. He, and D. Yang, High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer, Sci. Rep., 2015, 5, p 17371CrossRefGoogle Scholar
  14. 14.
    K. Liu, S. Qu, X. Zhang, F. Tan, Z. Wang, and K. Liu, Improved Photovoltaic Performance of Silicon Nanowire/Organic Hybrid Solar Cells by Incorporating Silver Nanoparticles, Nanoscale Res. Lett., 2013, 8, p 88CrossRefGoogle Scholar
  15. 15.
    M.Y. Bashouti, M. Pietsch, G. Brönstrup, V. Sivakov, J. Ristein, and S. Christiansen, A Non-oxidative Approach Towards Hybrid Silicon Nanowire Based Solar Cell Heterojunctions, Prog. Photovolt. Res. Appl., 2013, 2, p 2–13Google Scholar
  16. 16.
    M. Asgar, M. Hasan, Md Huq, and Z.H. Mahmood, Metal Assisted Synthesis of Single Crystalline Silicon Nanowires at Room Temperature for Photovoltaic Application, J. Nanomed. Nanotechnol., 2014, 5, p 4Google Scholar
  17. 17.
    M.G. Abdelaziz, K.A. Nageh, and A.S. Mohamed, Efficient Fabrication Methodology of Wide Angle Black Silicon for Energy Harvesting Applications, RSC Adv., 2017, 7, p 26974CrossRefGoogle Scholar
  18. 18.
    K. Liu, S. Qu, X. Zhang, F. Tan, and Z. Wang, Improved Photovoltaic Performance of Silicon Nanowire/Organic Hybrid Solar Cells by Incorporating Silver Nanoparticles, Nanoscale Res. Lett., 2013, 8, p 88CrossRefGoogle Scholar
  19. 19.
    P. Yogi, S. Mishra, S.K. Saxena, V. Kumar, and R. Kumar, Fano Scattering: Manifestation of Acoustic Phonons at Nanoscale, J. Phys. Chem. Lett., 2016, 7(24), p 5291–5296CrossRefGoogle Scholar
  20. 20.
    P. Yogi, S. Mishra, S.K. Saxena, V. Kumar, and R. Kumar, Spectral Anomaly in Raman Scattering from p-Type Silicon Nanowires, J. Phys. Chem. Lett., 2017, 121(9), p 5372–5378CrossRefGoogle Scholar
  21. 21.
    J.X. Wang, H.Q. Yan, Y. Qin, P.Q. Gao, J. Li, M. Yin, S. Peng, and D. He, Synthesis and Light Emission of Fine and Straight Si Nanowires, J. Optoelect. Adv. Mater., 2008, 10(12), p 3450–3453Google Scholar
  22. 22.
    V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S.H. Christiansen, Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters, Nano Lett., 2009, 9(4), p 1549–1554CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Rabina Bhujel
    • 1
  • Umesh Rizal
    • 1
  • Amit Agarwal
    • 2
  • Bhabani S. Swain
    • 3
  • Bibhu P. Swain
    • 1
  1. 1.Nano-processing Laboratory, Centre for Materials Science and NanotechnologySikkim Manipal Institute of TechnologyMajitarIndia
  2. 2.Electronics and Communication EngineeringSikkim Manipal Institute of TechnologyMajitar, RangpoIndia
  3. 3.School of Advanced Material EngineeringKookmin UniversitySeoulKorea

Personalised recommendations