Skip to main content
Log in

Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s−1 strain rate range. Based on the true stress–true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Davis, Copper and Copper Alloys. ASM Specialty Handbook (ASM International, USA, 2001), p. 153

  2. L.M. Bi, P. Liu, X.H. Chen, X.K. Liu, W. Li, and F.C. Ma, Analysis of Phase in Cu-15%Cr-0.24%Zr Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23(5), p 1342

    Article  Google Scholar 

  3. Y. Zhang, A.A. Volinsky, H.T. Tran, Z. Chai, P. Liu, B.H. Tian, and Y. Liu, Aging Behavior and Precipitates Analysis of the Cu-Cr-Zr-Ce Alloy, Mater. Sci. Eng. A, 2016, 650, p 248

    Article  Google Scholar 

  4. J.H. Su, Q.M. Dong, P. Liu, H.J. Li, and B.X. Kang, Research on Aging Precipitation in a Cu-Cr-Zr-Mg Alloy, Mater. Sci. Eng. A, 2005, 392(1), p 422

    Article  Google Scholar 

  5. L.K.L. Falk, P.R. Howell, G.L. Dunlop, and T.G. Langdon, The Role of Matrix Dislocations in the Superplastic Deformation of a Copper Alloy, Acta Metall., 1986, 34(7), p 1203

    Article  Google Scholar 

  6. S.C. Krishna, G.S. Rao, A.K. Jha, B. Pant, and P.V. Venkitakrishnan, Strengthening in High Strength Cu-Cr-Zr-Ti Alloy Plates Produced by Hot Rolling, Mater. Sci. Eng. A, 2016, 674, p 164

    Article  Google Scholar 

  7. A.Y. Khereddine, F.H. Larbi, H. Azzeddine, T. Baudin, F. Brisset, A.L. Helbert, M.H. Mathon, M. Kawasaki, D. Bradai, and T.G. Langdon, Microstructures and Textures of a Cu-Ni-Si Alloy Processed by High-Pressure Torsion, J. Alloys Compd., 2013, 574, p 361

    Article  Google Scholar 

  8. H. Zhang, H.G. Zhang, and L.X. Li, Hot Deformation Behavior of Cu-Fe-P Alloys During Compression at Elevated Temperatures, J. Mater. Process. Technol., 2009, 209(6), p 2892

    Article  Google Scholar 

  9. L.J. Peng, H.F. Xie, G.J. Huang, Y.F. Li, X.Q. Yin, X. Feng, X.J. Mi, and Z. Yang, The Phase Transformation and Its Effects on Properties of a Cu-0.12 wt.%Zr Alloy, Mater. Sci. Eng. A, 2015, 633, p 28

    Article  Google Scholar 

  10. Y. Ye, X. Yang, J. Wang, X. Zhang, Z. Zhang, and T. Sakai, Enhanced Strength and Electrical Conductivity of Cu-Zr-B Alloy by Double Deformation-Aging Process, J. Alloys Compd., 2014, 615, p 249

    Article  Google Scholar 

  11. J. Wongsa-Ngam, M. Kawasaki, Y. Zhao, and T.G. Langdon, Microstructural Evolution and Mechanical Properties of a Cu-Zr Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 528(25-6), p 7715

    Article  Google Scholar 

  12. V.A. Phillips, Electron Microscope Observations on Precipitation in a Cu-1.07 %Zr Alloy, Metallography, 1974, 7(2), p 137

    Article  Google Scholar 

  13. K. Wang, K.F. Liu, and J.B. Zhang, Microstructure and Properties of Aging Cu-Cr-Zr Alloy, Rare Met., 2014, 33(2), p 134

    Article  Google Scholar 

  14. Z. Yang, F. Zhang, C. Zheng, M. Zhang, B. Lv, and L. Qu, Study on Hot Deformation Behaviour and Processing Maps of Low Carbon Bainitic Steel, Mater. Des., 2015, 66, p 258

    Article  Google Scholar 

  15. B. Li, Q. Pan, and Z. Yin, Microstructural Evolution and Constitutive Relationship of Al-Zn-Mg Alloy Containing Small Amount of Sc and Zr During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, J. Alloys Compd., 2014, 584, p 406

    Article  Google Scholar 

  16. Y. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733

    Article  Google Scholar 

  17. Y. Zhang, B.H. Tian, A.A. Volinsky, H.L. Sun, Z. Chai, P. Liu, X.H. Chen, and Y. Liu, Dynamic Recrystallization Model of the Cu-Cr-Zr-Ag Alloy Under Hot Deformation, J. Mater. Res., 2016, 31, p 1275

    Article  Google Scholar 

  18. C.M. Sellars and W.J. Mctegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136

    Article  Google Scholar 

  19. N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252

    Article  Google Scholar 

  20. Y. Cao, H. Di, R.D.K. Misra, X. Yi, J.C. Zhang, and T.J. Ma, On the Hot Deformation Behavior of AISI, 420 Stainless Steel Based on Constitutive Analysis and CSL Model, Mater. Sci. Eng. A, 2014, 593, p 111

    Article  Google Scholar 

  21. Y. Zhang, H.L. Sun, A.A. Volinsky, B.H. Tian, Z. Chai, P. Liu, and Y. Liu, Hot Deformation and Dynamic Recrystallization Behavior of the Cu-Cr-Zr-Y Alloy, J. Mater. Eng. Perform., 2016, 25(3), p 1150

    Article  Google Scholar 

  22. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49(7), p 1199

    Article  Google Scholar 

  23. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22

    Article  Google Scholar 

  24. Y.H. Xiao, C. Guo, and X.Y. Guo, Constitutive Modeling of Hot Deformation Behavior of H62 Brass, Mater. Sci. Eng. A, 2011, 528(21), p 6510

    Article  Google Scholar 

  25. Z.Y. Ding, S.G. Jia, P.F. Zhao, M. Deng, and K.X. Song, Hot Deformation Behavior of Cu-0.6 Cr-0.03 Zr Alloy During Compression at Elevated Temperatures, Mater. Sci. Eng. A, 2013, 570, p 87

    Article  Google Scholar 

  26. Y. Zhang, A.A. Volinsky, H.T. Tran, Z. Chai, P. Liu, and B.H. Tian, Effects of Ce Addition on High Temperature Deformation Behavior of Cu-Cr-Zr Alloys, J. Mater. Eng. Perform., 2015, 24(10), p 3783

    Article  Google Scholar 

  27. G.L. Ji, Q. Li, K.Y. Ding, L. Yang, and L. Li, A Physically-Based Constitutive Model for High Temperature Deformation of Cu-0.36 Cr-0.03 Zr Alloy, J. Alloys Compd., 2015, 648, p 397

    Article  Google Scholar 

  28. C.L. Gan, Y.D. Xue, and M.J. Wang, Prediction of the Flow Stress of Al6061 at Hot Deformation Conditions, Mater. Sci. Eng. A, 2011, 528, p 4199

    Article  Google Scholar 

  29. Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comp. Mater. Sci., 2008, 42(3), p 470

    Article  Google Scholar 

  30. Z.W. Cai, F.X. Chen, and J.Q. Guo, Constitutive Model for Elevated Temperature Flow Stress of AZ41M Magnesium Alloy Considering the Compensation of Strain, J. Alloys Compd., 2015, 648, p 215

    Article  Google Scholar 

  31. E.I. Poliak and J.J. Jonas, Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684

    Article  Google Scholar 

  32. H.L. Sun, Y. Zhang, A.A. Volinsky, B.J. Wang, B.H. Tian, Z. Chai, and Y. Liu, Effects of Ag Addition on Hot Deformation Behavior of Cu-Ni-Si Alloys. Adv. Eng. Mater. 2017, 19(3). https://doi.org/10.1002/adem.201600607

  33. H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31(3), p 1174

    Article  Google Scholar 

  34. G.J. Huang, B.H. Qian, L.Y. Wang, and J.J. Jonas, Study on the Critical Conditions for Initial Dynamic Recrystallization of AZ31 Magnesium Alloy, Rare Met. Mater. Eng., 2007, 36(12), p 2080

    Google Scholar 

  35. E.S. Puchi-Cabrera, M.H. Staia, J.D. Guerin, J. Lesage, M. Dubar, and D. Chicot, Analysis of the Work-Hardening Behavior of C-Mn Steels Deformed Under Hot-Working Conditions, Int. J. Plast, 2013, 51, p 145

    Article  Google Scholar 

  36. Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 82

    Article  Google Scholar 

  37. T.D. Kil, J.M. Lee, and Y.H. Moon, Quantitative Formability Estimation of Ring Rolling Process by Using Deformation Processing Map, J. Mater. Process. Technol., 2015, 220, p 224

    Article  Google Scholar 

  38. T. Xi, C.G. Yang, M.B. Shahzad, and K. Yang, Study of the Processing Map and Hot Deformation Behavior of a Cu-Bearing 317LN Austenitic Stainless Steel, Mater. Des., 2015, 87, p 303

    Article  Google Scholar 

  39. D.J. Li, Y.R. Feng, Z.F. Yin, F.S. Shangguan, K. Wang, Q. Liu, and F. Hu, Prediction of Hot Deformation Behaviour of Fe-25Mn-3Si-3Al TWIP Steel, Mater. Sci. Eng. A, 2011, 528(28), p 8084

    Article  Google Scholar 

  40. Y. Zhang, B.H. Tian, A.A. Volinsky, X.H. Chen, H.L. Sun, Z. Chai, P. Liu, and Y. Liu, Dynamic Recrystallization Model of the Cu-Cr-Zr-Ag Alloy Under Hot Deformation, J. Mater. Res., 2016, 31(9), p 1275

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51101052) and the National Science Foundation (IRES 1358088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhang or Huili Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, H., Volinsky, A.A. et al. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy. J. of Materi Eng and Perform 27, 728–738 (2018). https://doi.org/10.1007/s11665-018-3168-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3168-2

Keywords

Navigation