Advertisement

Effect of Grain Boundaries on the Performance of Thin-Film-Based Polycrystalline Silicon Solar Cells: A Numerical Modeling

  • Nikita Chhetri
  • Somenath ChatterjeeEmail author
Article

Abstract

Solar cells/photovoltaic, a renewable energy source, is appraised to be the most effective alternative to the conventional electrical energy generator. A cost-effective alternative of crystalline wafer-based solar cell is thin-film polycrystalline-based solar cell. This paper reports the numerical analysis of dependency of the solar cell parameters (i.e., efficiency, fill factor, open-circuit voltage and short-circuit current density) on grain size for thin-film-based polycrystalline silicon (Si) solar cells. A minority carrier lifetime model is proposed to do a correlation between the grains, grain boundaries and lifetime for thin-film-based polycrystalline Si solar cells in MATLAB environment. As observed, the increment in the grain size diameter results in increase in minority carrier lifetime in polycrystalline Si thin film. A non-equivalent series resistance double-diode model is used to find the dark as well as light (AM1.5) current–voltage (I-V) characteristics for thin-film-based polycrystalline Si solar cells. To optimize the effectiveness of the proposed model, a successive approximation method is used and the corresponding fitting parameters are obtained. The model is validated with the experimentally obtained results reported elsewhere. The experimentally reported solar cell parameters can be found using the proposed model described here.

Keywords

efficiency fill factor grain size lifetime polycrystalline silicon thin-film solar cell 

Notes

Acknowledgment

Authors sincerely acknowledge the Department of Science and Technology, Govt. of India, for financial support vide reference no. DST/TM/SERI/2k12/15(G) and 15(C) under Clean Energy Research Initiative scheme. Authors also acknowledge Mr. Debjyoti Ghosh and Mr. Omprakash Singh of Electronics and Communication Engineering Dept., Sikkim Manipal Institute of Technology, Sikkim, for their kind support in using MATLAB.

References

  1. 1.
    K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photo Conversion Efficiency Over 26%, Sol. Energy, 2017, 2, p 1–8Google Scholar
  2. 2.
    M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J.H. Binger, and E.W.Y. Anita, Ho-Baillie, Solar Cell Efficiency Tables (version 50), Prog. Photovolt. Res. Appl., 2017, 25, p 668–676CrossRefGoogle Scholar
  3. 3.
    N. Balaji, S. Lee, C. Park, J. Raja, H.T.T. Nguyen, S. Chatterjee, K. Nikesh, R. Jeyakumar, and J. Yi, Surface Passivation of Boron Emitters on n-type c-Si Solar Cells Using Silicon Dioxide and a PECVD Silicon Oxynitride Stack, RSC adv., 2016, 6(74), p 70040–70045CrossRefGoogle Scholar
  4. 4.
    S. Chatterjee, S. Singh, and H. Pal, Effect of Multijunction Approach on Electrical Measurements of Silicon and Germanium Alloy Based Thin-Film Solar Cell Using AMPS-1D, Int. J. of Photoenergy, 2014, 2014, p 1–6CrossRefGoogle Scholar
  5. 5.
    O. Tuzun, Y. Qiu, A. Slaoui, I. Gordon, C. Maurice, S. Venkatachalam, S. Chatterjee, G. Beaucarne, and J. Poortmans, Properties of n-type Polycrystalline Silicon Solar Cells Formed by Aluminium Induced Crystallization and CVD Thickening, Sol. Energy Mater. Sol. Cells, 2010, 94(11), p 1869–1874CrossRefGoogle Scholar
  6. 6.
    A.G. Aberle, A. Straub, P.I. Widenborg, A.B. Sproul, Y. Huang, and P. Campbell, Polycrystalline Silicon Thin-film Solar Cells on Glass by Aluminium-induced Crystallisation and Subsequent Ion-assisted Deposition (ALICIA), Prog. Photovolt: Res. Appl., 2005, 13, p 37–47CrossRefGoogle Scholar
  7. 7.
    R. Shimokawa and Y. Hayashi, Effect of Localized Grain Boundaries in Semi Crystalline Silicon Solar Cells, J. Appl. Phys., 1986, 59, p 2571–2576CrossRefGoogle Scholar
  8. 8.
    K.R. Taretto, Modeling and Characterization of Polycrystalline Silicon for Solar Cells and Microelectronics, PhD dissertation, University of Stuttgart, Germany, 2003Google Scholar
  9. 9.
    K. Sharma and D.P. Joshi, A Model of Electrical Conduction Across the Grain Boundaries in Polycrystalline-Silicon Thin Film Transistors and Metal Oxide Semiconductor Field Effect Transistors, J. Appl. Phys., 2009, 106, p 204504 (1–9)Google Scholar
  10. 10.
    D.P. Joshi, Theoretical Study of the Electrical and Photovoltaic Properties of Polycrystalline Silicon. PhD dissertation, Garhwal University, India, 1985Google Scholar
  11. 11.
    M.A. Green, Bounds Upon Grain Boundary Effects in Minority Carrier Semiconductor Devices: A Rigorous ‘‘perturbation’’ Approach with Application to Silicon Solar Cells, J. Appl. Phys., 1996, 80, p 1515–1521CrossRefGoogle Scholar
  12. 12.
    J. Schmidt and A.G. Aberle, Accurate Method for the Determination of Bulk Minority-carrier Lifetimes of Mono- and Multicrystalline Silicon Wafers, J. Appl. Phys., 1997, 81, p 6186–6199CrossRefGoogle Scholar
  13. 13.
    D.P. Joshi and K. Sharma, Effects of Grain Boundaries on the Performance of Polycrystalline Silicon Solar Cells, Indian J. Pure Appl. Phys., 2012, 50, p 661–669Google Scholar
  14. 14.
    G. Beaucarne, Silicon Thin-Film Solar Cells, Advances in Opto Electronics, 2007, 2007, p 1–12Google Scholar
  15. 15.
    A.K. Ghosh, C. Fishman, and T. Feng, Theory of the Electrical and Photovoltaic Properties of Polycrystalline Silicon, J. Appl. Phys., 1980, 51, p 446–454CrossRefGoogle Scholar
  16. 16.
    J. Wong, J.L. Huang, B. Eggleston, M.A. Green, O. Kunz, R. Evans, M. Keevers, and R.J. Egan, Lifetime Limiting Recombination Pathway in Thin-Film Polycrystalline Silicon on Glass Solar Cells, J. Appl. Phys., 2010, 107, p 123705(1-6)Google Scholar
  17. 17.
    R.M. Hall, Silicon Photovoltaic Cells, Solid-State Electronics, 1981, 24(7), p 595–616CrossRefGoogle Scholar
  18. 18.
    G.R. Walker, Evaluating MPPT Topologies Using a MATLAB PV Model, Journal of Electrical & Electronics Engineering, 2001, 21, p 49–56Google Scholar
  19. 19.
    J. Szlufcik, S. Sivoththaman, J.F. Nlis, R.P. Mertens, and R. Van Overstraeten, Low-cost Industrial Technologies of Crystalline Silicon Solar Cells, Proc. IEEE, 1997, 85, p 711–730CrossRefGoogle Scholar
  20. 20.
    M.D. Ker and C.Y. Chang, High Current Characterization of Polysilicon Diode for Electrostatic Discharge Protection in Sub-Quarter-Micron Complementary Metal Oxide Semiconductor Technology, Jpn. J. Appl. Phys., 2003, 42, p 3377–3378CrossRefGoogle Scholar
  21. 21.
    H. Sai, K. Maejima, T. Matsui, T. Koida, M. Kondo, S. Nakao, Y. Takeuchi, H. Katayama, and I. Yoshida, High Efficiency Microcrystalline Silicon Solar Cells on Honeycomb Textured Substrates Grown with High-rate VHF Plasma-enhanced Chemical Vapor Deposition, Jpn. J. Appl. Phys., 2015, 54, p 08KB05(1-6)CrossRefGoogle Scholar
  22. 22.
    D.V. Gestel, I. Gordon, and J. Poortmans, Aluminum-Induced Crystallization for Thin-Film Polycrystalline Silicon Solar Cells: Achievements and Perspective, Sol. Energy Mater. Sol. Cells, 2013, 119, p 261–270CrossRefGoogle Scholar
  23. 23.
    I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, 8% Efficient Thin-film Polycrystalline-Silicon Solar Cells Based on Aluminum-Induced Crystallization and Thermal CVD, Prog. Photovolt: Res. Appl., 2007, 15, p 575–586CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Center for Materials Science and Nanotechnology, Sikkim Manipal Institute of TechnologySikkim Manipal UniversitySikkimIndia
  2. 2.Department of Electronics and Communication Engineering, Sikkim Manipal Institute of TechnologySikkim Manipal UniversitySikkimIndia

Personalised recommendations