Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell

  • Sayantan Sil
  • Arka Dey
  • Soumi Halder
  • Joydeep Datta
  • Partha Pratim RayEmail author


Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic–inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV–Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (− 6.97 eV) and LUMO (− 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.


acceptor donor hydrothermal nanocomposite quenching solar cell 



Sayantan Sil acknowledges University Grants Commission (UGC) for providing NET-Junior Research Fellowship. The support from the FIST and PURSE Program of the Department of Science and Technology (DST) and UPE Program of UGC, Government of India, is also acknowledged.


  1. 1.
    A. Rockett and R.W. Birkmire, CuInSe2 for Photovoltaic Applications, J. Appl. Phys., 2016, 70(7), p R81CrossRefGoogle Scholar
  2. 2.
    J. Xu, C.Y. Luan, Y.B. Tang, X. Chen, J.A. Zapien, W.J. Zhang, H.L. Kwong, X.M. Meng, S.T. Lee, and C.S. Lee, Low-Temperature Synthesis of CuInSe2 Nanotube Array on Conducting Glass Substrates for Solar Cell Application, ACS Nano, 2010, 4(10), p 6064–6070CrossRefGoogle Scholar
  3. 3.
    L. Li, N. Coates, and D. Moses, Solution-Processed Inorganic Solar Cell Based on in Situ Synthesis and Film Deposition of CuInS2 Nanocrystals, J. Am. Chem. Soc., 2010, 132(1), p 22–23CrossRefGoogle Scholar
  4. 4.
    J.J. Wang, Y.Q. Wang, F.F. Cao, Y.G. Guo, and L.J. Wan, Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application in High-Performance Organic-Inorganic Hybrid Photodetectors, J. Am. Chem. Soc., 2010, 132(35), p 12218–12221CrossRefGoogle Scholar
  5. 5.
    T. Omata, K. Nose, and S. Otsuka-Yao-Matsuo, Size Dependent Optical Band Gap of Ternary I-III-VI2 Semiconductor Nanocrystals, J. Appl. Phys., 2009, 105(7), p 073106CrossRefGoogle Scholar
  6. 6.
    K. Takeya, Y. Takemoto, I. Kawayama, H. Murakami, T. Matsukawa, M. Yoshimura, Y. Mori, and M. Tonouchi, Terahertz Emission from Coherent Phonons in Lithium Ternary Chalcopyrite Crystals Illuminated by 1560 nm Femtosecond Laser Pulses, Europhys. Lett., 2010, 91(2), p 20004CrossRefGoogle Scholar
  7. 7.
    G. Donnay, L.M. Corliss, J.D.H. Donnay, N. Elliott, and J.M. Hastings, Symmetry of Magnetic Structures: Magnetic Structure of Chalcopyrite, Phys. Rev., 1958, 112(6), p 1917–1923CrossRefGoogle Scholar
  8. 8.
    S. Conejeros, P. Alemany, M. Llunell, I.P.R. Moreira, V. Sánchez, and J. Llanos, Electronic Structure and Magnetic Properties of CuFeS2, Inorg. Chem., 2015, 54(10), p 4840–4849CrossRefGoogle Scholar
  9. 9.
    L. Pauling and L.O. Brockway, The Crystal Structure of Chalcopyrite CuFeS2, Z. Kristallogr., 1932, 82(1), p 188–194Google Scholar
  10. 10.
    Kuan-ting Chen, Chung-Jie Chiang, and D. Ray, Hydrothermal Synthesis of Chalcopyrite Using an Environmental Friendly Chelating Agent, Mater. Lett., 2013, 98, p 270–272CrossRefGoogle Scholar
  11. 11.
    S.R. Hall and J.M. Stewart, The Crystal Structure Refinement of Chalcopyrite, CuFeS2, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 1973, 29(3), p 579–585CrossRefGoogle Scholar
  12. 12.
    X. Wu, Y. Zhao, C. Yang, and G. He, PVP-Assisted Synthesis of Shape-Controlled CuFeS2 Nanocrystals for Li-Ion Batteries, J. Mater. Sci., 2015, 50(12), p 4250–4257CrossRefGoogle Scholar
  13. 13.
    Q. Xu, B. Huang, Y. Zhao, Y. Yan, R. Noufi, and S.H. Wei, Crystal and Electronic Structures of CuxS Solar Cell Absorbers, Appl. Phys. Lett., 2012, 100(6), p 061906CrossRefGoogle Scholar
  14. 14.
    S. Middya, A. Layek, A. Dey, J. Datta, M. Das, C. Banerjee, and P.P. Ray, Role of Zinc Oxide Nanomorphology on Schottky Diode Properties, Chem. Phys. Lett., 2014, 610–611, p 39–44CrossRefGoogle Scholar
  15. 15.
    J. Hu, Q. Lu, B. Deng, K. Tang, Y. Qian, Y. Li, G. Zhou, and X. Liu, A Hydrothermal Reaction to Synthesize CuFeS2 Nanorods, Inorg. Chem. Commun., 1999, 2(12), p 569–571CrossRefGoogle Scholar
  16. 16.
    N.A. Anderson, E. Hao, X. Ai, G. Hastings, and T. Lian, Ultrafast and Long-Lived Photoinduced Charge Separation in MEH-PPV/Nanoporous Semiconductor Thin Film Composites, Chem. Phys. Lett., 2001, 347(4–6), p 304–310CrossRefGoogle Scholar
  17. 17.
    W.U. Huynh, J. Dittmer, and A.P. Alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science, 2002, 295(5564), p 2425–2427CrossRefGoogle Scholar
  18. 18.
    H. Zhang, X. Ren, and Z. Cui, Shape-Controlled Synthesis of Cu2O Nanocrystals Assisted by PVP and Application as Catalyst for Synthesis of Carbon Nanofibers, J. Cryst. Growth, 2007, 304(1), p 206–210CrossRefGoogle Scholar
  19. 19.
    A. Layek, A. Dey, J. Datta, M. Das, and P.P. Ray, Novel CuFeS2 Pellet Behaves Like a Portable Signal Transporting Network: Studies of Immittance, RSC Adv., 2015, 5(44), p 34682–34689CrossRefGoogle Scholar
  20. 20.
    P. Kumar, S. Uma, and R. Nagarajan, Precursor Driven One Pot Synthesis of Wurtzite and Chalcopyrite CuFeS2, Chem. Commun., 2013, 49(66), p 7316CrossRefGoogle Scholar
  21. 21.
    A. Dey, A. Layek, A. Roychowdhury, M. Das, J. Datta, S. Middya, D. Das, and P.P. Ray, Investigation of Charge Transport Properties in Less Defective Nanostructured ZnO Based Schottky Diode, RSC Adv., 2015, 5(46), p 36560–36567CrossRefGoogle Scholar
  22. 22.
    S. Middya, A. Layek, A. Dey, and P.P. Ray, Synthesis of Nanocrystalline FeS2 with Increased Band Gap for Solar Energy Harvesting, J. Mater. Sci. Technol., 2014, 30(8), p 770–775CrossRefGoogle Scholar
  23. 23.
    E. Kucur, J. Riegler, G.A. Urban, and T. Nann, Determination of Quantum Confinement in CdSe Nanocrystals by Cyclic Voltammetry, J. Chem. Phys., 2003, 119(4), p 2333CrossRefGoogle Scholar
  24. 24.
    I.H. Campbell, T.W. Hagler, and D.L. Smith, Direct Measurement of Conjugated Polymer Electronic Excitation Energies Using Metal/Polymer/Metal Structures, Phys. Rev. Lett., 1996, 76(11), p 1900–1903CrossRefGoogle Scholar
  25. 25.
    D.K. Chambers, S. Karanam, D. Qi, S. Selmic, Y.B. Losovyj, L.G. Rosa, and P.A. Dowben, The Electronic Structure of Oriented Poly[2-Methoxy-5-(2′-Ethyl-Hexyloxy)-1,4-Phenylene-Vinylene], Appl. Phys. A, 2005, 80(3), p 483–488CrossRefGoogle Scholar
  26. 26.
    S. Middya, A. Layek, A. Dey, and P.P. Ray, Morphological Impact of ZnO Nanoparticle on MEHPPV: ZnO Based Hybrid Solar Cell, J. Mater. Sci. Mater. Electron., 2013, 24(11), p 4621–4629CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations