Skip to main content

Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

Abstract

NiTi shape-memory alloys may release poisonous Ni ions at the alloys’ surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10−5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7: a,b
Fig. 8
Fig. 9

References

  1. 1.

    T. Duerig, A. Pelton, and D. Stöckel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160

    Article  Google Scholar 

  2. 2.

    J.V. Humbeeck and R. Stalmans, Thermomechanical Properties of SMA, Shape Memory Materials, K. Otsuka and C.M. Wayman, Ed., Cambridge University Press, Cambridge, 1998,

    Google Scholar 

  3. 3.

    M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Assessing the Biocompatibility of NiTi Shape Memory Alloys Used for Medical Applications, Anal. Bioanal. Chem., 2005, 381, p 557–567

    Article  Google Scholar 

  4. 4.

    S. Shabalovskaya, G. Rondelli, and M. Rettenmayr, Nitinol Surfaces for Implantation, J. Mater. Eng. Perform., 2009, 18, p 470–474

    Article  Google Scholar 

  5. 5.

    D.P. Aun, M. Houmard, M. Mermoux, L. Latu-Romain, J.-C. Joud, G. Berthomé, and V.T. Lopes Buono, Development of a Flexible Nanocomposite TiO2 Film as a Protective Coating for Bioapplications of Superelastic NiTi Alloys, Appl. Surf. Sci., 2016, 375, p 42–49

    Article  Google Scholar 

  6. 6.

    Y. Cheng, W. Cai, H.T. Li, and Y.F. Zheng, Surface Modification on NiTi Alloy with Tantalum to Improve Its Biocompatibility and Radiopacity, J. Mater. Sci., 2006, 41, p 4961

    Article  Google Scholar 

  7. 7.

    D. Starosvetsky and I. Gotman, Corrosion Behavior of Titanium Nitride Coated Ni–Ti Shape Memory Surgical Alloy, Biomaterials, 2001, 22, p 1853–1859

    Article  Google Scholar 

  8. 8.

    K.W.K. Yeung, R.W.Y. Poon, X.Y. Liu, J.P.Y. Ho, C.Y. Chung, P.K. Chu, W.W. Lu, D. Chan, and K.M.C. Cheung, Corrosion Resistance, Surface Mechanical Properties, and Cytocompatibility of Plasma Immersion Ion Implantation–Treated Nickel-Titanium Shape Memory Alloys, J. Biomed. Mater. Res. A, 2005, 75, p 256–267

    Article  Google Scholar 

  9. 9.

    M. Chembath, J.N. Balaraju, and M. Sujata, Surface Characteristics, Corrosion and Bioactivity of Chemically Treated Biomedical Grade NiTi Alloy, Mater. Sci. Eng. C, 2015, 56, p 417–425

    Article  Google Scholar 

  10. 10.

    T.T. Zhao, Y. Li, Y. Liu, and X.Q. Zhao, Nano-Hardness, Wear Resistance and Pseudoelasticity of Hafnium Implanted NiTi Shape Memory Alloy, J. Mech. Behav. Biomed. Mater., 2012, 13, p 174–184

    Article  Google Scholar 

  11. 11.

    M. Leskelä and M. Ritala, Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures, Thin Solid Films, 2002, 409, p 138–146

    Article  Google Scholar 

  12. 12.

    M. Leskelä and M. Ritala, Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges, Angew. Chem. Int. Ed., 2003, 42, p 5548–5554

    Article  Google Scholar 

  13. 13.

    S.W. Choi, J.Y. Park, and S.S. Kim, Synthesis of SnO2–ZnO Core–Shell Nanofibers Via a Novel Two-Step Process and Their Gas Sensing Properties, Nanotechnology, 2009, 20, p 465603

    Article  Google Scholar 

  14. 14.

    C.X. Shan, X. Hou, and K.L. Choy, Corrosion Resistance of TiO2 Films Grown on Stainless Steel by Atomic Layer Deposition, Surf. Coat. Technol., 2008, 202, p 2399–2402

    Article  Google Scholar 

  15. 15.

    A.I. Abdulagatov, Y. Yan, J.R. Cooper, Y. Zhang, Z.M. Gibbs, A.S. Cavanagh, R.G. Yang, Y.C. Lee, and S.M. George, Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance, ACS Appl. Mater. Interfaces., 2011, 3, p 4593–4601

    Article  Google Scholar 

  16. 16.

    M. Basiaga, M. Staszuk, W. Walke, and Z. Opilski, Mechanical Properties of Atomic Layer Deposition (ALD) TiO2 Layers on Stainless Steel Substrates, Materialwiss. Werkstofftech., 2016, 47, p 512–520

    Article  Google Scholar 

  17. 17.

    E. Marin, A. Lanzutti, L. Paussa, L. Guzman, and L. Fedrizzi, Long Term Performance of Atomic Layer Deposition Coatings for Corrosion Protection of Stainless Steel, Mater. Corros., 2015, 66, p 907–914

    Article  Google Scholar 

  18. 18.

    W. Walke, M. Kaczmarek, M. Staszuk, and M. Basiaga, Influence of Purge, Time of Waiting and TiCl4 Dosing Time in a Low-Pressure Atomic Layer Deposition (ALD) Reactor on Properties of TiO2 Layer, Metalurgija, 2017, 56, p 179–181

    Google Scholar 

  19. 19.

    M.R. Saleem, P. Silfsten, S. Honkanen, and J. Turunen, Thermal Properties of TiO2 Films Grown by Atomic Layer Deposition, Thin Solid Films, 2012, 520, p 5442–5446

    Article  Google Scholar 

  20. 20.

    C.C. Kei, Y.S. Yu, J. Racek, D. Vokoun, and P. Sittner, Atomic Layer-Deposited Al2O3 Coatings on NiTi Alloy, J. Mater. Eng. Perform, 2014, 23, p 2641–2649

    Article  Google Scholar 

  21. 21.

    C.C. Kei, Y.H. Yu, J. Racek, D. Vokoun, L. Kadeřávek, Corrosion and Mechanical Properties of Atomic Layer Deposited TiO2 Coatings on NiTi Implants. In 2016 IEEE International Conference Industrial Technology (ICIT) (2016), p 1328–1332

  22. 22.

    O. Takakuwa and H. Soyama, Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel, Adv. Chem. Eng. Sci., 2015, 5, p 62–71

    Article  Google Scholar 

  23. 23.

    X. Zhao, P. Munroe, D. Habibi, and Z. Xie, Roles of Compressive Residual Stress in Enhancing the Corrosion Resistance of Nano Nitride Composite Coatings on Steel, J. Asian Ceram. Soc., 2013, 1, p 86–94

    Article  Google Scholar 

  24. 24.

    Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings, Thin Solid Films, 1997, 306, p 23–33

    Article  Google Scholar 

  25. 25.

    R. Karpagavalli, A. Zhou, P. Chellamuthu, and K. Nguyen, Corrosion Behavior and Biocompatibility of Nanostructured TiO2 Film on Ti6Al14V, J. Biomed. Mater. Res. A, 2007, 83, p 1087–1095

    Article  Google Scholar 

  26. 26.

    C. Trépanier, M. Tabrizian, L. Yahia, L. Bilodear, and D.L. Piron, Effect of Modification of Oxide Layer on NiTi Stent Corrosion Resistance, J. Biomed. Mater. Res. B, 1998, 43, p 433–440

    Article  Google Scholar 

  27. 27.

    H. Tian, D. Schryvers, D. Liu, Q. Jiang, and J. Van Humbeeck, Stability of Ni in Nitinol Oxide Surfaces, Acta Biomater., 2011, 7, p 892–899

    Article  Google Scholar 

  28. 28.

    A. Undisz, R. Hanke, K.E. Freiberg, V. Hoffmann, and M. Rettenmayr, The Effect of Heating Rate on the Surface Chemistry of NiTi, Acta Biomater., 2014, 10, p 4919–4923

    Article  Google Scholar 

  29. 29.

    D. Vokoun, M. Svatuška, J. Olejníček, M. Kohout, J. Drahokoupil, M. Rameš, J. Vejpravová, A. Mantlíková, L. Fekete, J. Kopeček, L. Klimša, and O. Heczko, Ni–TiO2 Nanocomposite Films and Their Magnetic Properties, Physica B Condens. Matter, 2016, 503, p 44–50

    Article  Google Scholar 

  30. 30.

    J.S. King, E. Graugnard, and C.J. Summers, TiO2 Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition, Adv. Mater., 2005, 17, p 1010–1013

    Article  Google Scholar 

  31. 31.

    D. Chen, E.H. Jordan, M. Gell, and X. Ma, Dense TiO2 Coating Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2008, 91, p 865–872

    Article  Google Scholar 

  32. 32.

    T. Fu, B.G. Liu, Y.M. Zhou, and X.M. Wu, Sol–gel Titania Coating on NiTi Alloy with a Porous Titania Film as Interlayer, J. Sol Gel. Sci. Technol., 2011, 58, p 307–311

    Article  Google Scholar 

  33. 33.

    U. Backman, A. Auvinen, and J.K. Jokiniemi, Deposition of Nanostructured Titania Films by Particle-Assisted MOCVD, Surf. Coat. Technol., 2005, 192, p 81–87

    Article  Google Scholar 

  34. 34.

    H.T. Siu and H.C. Man, Fabrication of Bioactive Titania Coating on Nitinol by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2013, 274, p 181–187

    Article  Google Scholar 

  35. 35.

    H. Morawiec, T. Goryczka, J. Lelątko, Z. Lekston, A. Winiarski, E. Rówiński, and F. Stergioudis, Surface Structure of NiTi Alloy Passivated by Autoclaving. Materials Science Forum, vol. 636–637, Trans Tech Publications, Switzerland, 2010, p 971–976

    Google Scholar 

  36. 36.

    Y.W. Gu, B.Y. Tay, C.S. Lim, and M.S. Yong, Characterization of Bioactive Surface Oxidation Layer on NiTi Alloy, Appl. Surf. Sci., 2005, 252, p 2038–2049

    Article  Google Scholar 

  37. 37.

    L. Tan and W.C. Crone, Surface Characterization of NiTi Modified by Plasma Source Ion Implantation, Acta Mater., 2002, 50, p 4449–4460

    Article  Google Scholar 

  38. 38.

    B. Yuan, H. Li, Y. Gao, C.Y. Chung, and M. Zhu, Passivation and Oxygen Ion Implantation Double Surface Treatment on Porous NiTi Shape Memory Alloys and Its Ni Suppression Performance, Surf. Coat. Technol., 2009, 204, p 58–63

    Article  Google Scholar 

  39. 39.

    Z.D. Cui, H.C. Man, and X.J. Yang, The Corrosion and Nickel Release Behavior of Laser Surface-Melted NiTi Shape Memory Alloy in Hanks, Solution, Surf. Coat. Technol., 2005, 192, p 347–353

    Article  Google Scholar 

  40. 40.

    C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals, McGraw-Hill, New York, 1999

    Google Scholar 

  41. 41.

    J.D.P. Counsell, A.J. Roberts, W. Boxford, C. Moffitt, and K. Takahashi, Reduced Preferential Sputtering of TiO2 Using Massive Argon Clusters, J. Surf. Anal., 2014, 20, p 211–215

    Google Scholar 

  42. 42.

    J. Racek, M. Stora, P. Šittner, L. Heller, J. Kopeček, and M. Petrenec, Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential, Shape Memory Superelasticity, 2015, 1, p 204–230

    Article  Google Scholar 

  43. 43.

    J.L. Ong, L.C. Lucas, G.N. Raikar, R. Connatser, and J.C. Gregory, Spectroscopic Characterization of Passivated Titanium in a Physiologic Solution, J. Mater. Sci. Mater. Med., 1995, 6, p 113–119

    Article  Google Scholar 

  44. 44.

    K. Hirmanova, J. Pilch, J. Racek, L. Heller, P. Sittner, and P. Sedlak, Physical Simulation of the Random Failure of Implanted Braided NiTi Stents, J. Mater. Eng. Perform., 2014, 23, p 2650–2658

    Article  Google Scholar 

  45. 45.

    C.M. Chan, S. Trigwell, and T. Duerig, Oxidation of an NiTi Alloy, Surf. Interface Anal., 1990, 15, p 349–354

    Article  Google Scholar 

Download references

Acknowledgments

The work conducted in the Czech Republic and in Taiwan was supported by the Academy of Sciences of the Czech Republic and the Ministry of Science and Technology, R.O.C. within a Czech–Taiwanese Joint Research Project Nos. MOST-15-01 and MOST-17-04. The support of the work of P. Šittner under the Czech Science Foundation via Project AdMat 14-36566G is also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Vokoun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vokoun, D., Racek, J., Kadeřávek, L. et al. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface. J. of Materi Eng and Perform 27, 572–579 (2018). https://doi.org/10.1007/s11665-018-3136-x

Download citation

Keywords

  • atomic layer deposition
  • corrosion
  • mechanical tests
  • NiTi
  • SEM
  • TiO2