Journal of Materials Engineering and Performance

, Volume 27, Issue 2, pp 764–776 | Cite as

Laser-Hardened and Ultrasonically Peened Surface Layers on Tool Steel AISI D2: Correlation of the Bearing Curves’ Parameters, Hardness and Wear

  • D. A. LesykEmail author
  • S. Martinez
  • B. N. Mordyuk
  • V. V. Dzhemelinskyi
  • A. Lamikiz
  • G. I. Prokopenko
  • K. E. Grinkevych
  • I. V. Tkachenko


This paper is focused on the effects of the separately applied laser heat treatment (LHT) and ultrasonic impact treatment (UIT) and the combined LHT + UIT process on the wear and friction behaviors of the hardened surface layers of the tool steel AISI D2. In comparison with the initial state, wear losses of the treated specimens after long-term wear tests were decreased by 68, 41, and 77% at the LHT, UIT, and combined LHT + UIT processes, respectively. The Abbott–Firestone bearing curves were used to analyze the material ratio and functional characterization (bearing capacity and oil capacitance) of the studied surface specimens. The wear losses registered after short (15 min) tests correlate well with the changes in experimental surface roughness Ra, and the predictive Rpk, and bearing capacity B C parameters, respectively, evaluated using the Abbott–Firestone curves and Kragelsky–Kombalov formula. The wear losses after the long-term (45 min) tests are in good correlation with the reciprocal surface microhardness HV and with the W L and W P wear parameters, respectively, estimated using Archard–Rabinowicz formula and complex roughness-and-strength approach. The observed HV increase is supported by nanotwins (LHT), by dense dislocation nets (UIT), and by dislocation cells/nanograins fixed with fine carbides (LHT + UIT) formed in the surface layers of the steel.


bearing curve hardness laser heat treatment tool steel AISI D2 ultrasonic impact treatment wear 



This study is financially supported by the East-West European Network on higher Technical education (EWENT) programme Erasmus Mundus Action 2 Lot 8, as well as partially supported by National Academy of Sciences of Ukraine (Project 0114U001127) and Scientific Program of NASU “Reliability and durability of materials, structures, equipment and buildings Resource 2” (Projects 9.8.1 and 9.8.2).


  1. 1.
    J.R. Davis, Surface Hardening of Steels: Understanding the Basics, ASM International, Materials Park, 2002.Google Scholar
  2. 2.
    S. Momeni and W. Tillmann, Investigation of the Self-healing Sliding Wear Characteristics of NiTi-Based PVD Coatings on Tool Steel, Wear, 2016, 368–369, p 53–59CrossRefGoogle Scholar
  3. 3.
    V. Kovalenko, Ways to Intensify Laser Hardening Technology, CIRP Ann. Manuf. Technol., 1998, 47(1), p 133–136CrossRefGoogle Scholar
  4. 4.
    A.F.I. Idan, O. Akimov, L. Golovko, O. Goncharuk, and K. Kostyk, The Study of the Influence of Laser Hardening Conditions on the Change in Properties of Steels, East. Eur. J. Eenter. Technol., 2016, 2/5(80), p 69–73Google Scholar
  5. 5.
    M.I.S. Ismail and Z. Taha, Surface Hardening of Tool Steel by Plasma Arc with Multiple Passes, Int. J. Technol., 2014, 5, p 79–87CrossRefGoogle Scholar
  6. 6.
    R.G. Song, K. Zhang, and G.N. Chen, Electron Beam Surface Treatment. Part I: Surface Hardening of AISI, D3 Tool Steel, Vacuum, 2003, 69, p 513–516CrossRefGoogle Scholar
  7. 7.
    P. Sun, S. Li, G. Yu, X. He, C. Zheng, and W. Ning, Laser Surface Hardening of 42CrMo Cast Steel for Obtaining a Wide and Uniform Hardened Layer by Shaped Beams, Int. J. Adv. Manuf. Technol., 2014, 70, p 787–796CrossRefGoogle Scholar
  8. 8.
    M. Pellizzari and M.G. De Flora, Influence of Laser Hardening on the Tribological Properties of Forged Steel for Hot Rolls, Wear, 2011, 271, p 2402–2411CrossRefGoogle Scholar
  9. 9.
    V.S. Kovalenko and L.F. Golovko, The Role of Dimensional Factors and Absorption Efficiency in Laser Surface Hardening, Opt. Lasers Eng., 1990, 12(1), p 55–65CrossRefGoogle Scholar
  10. 10.
    A. Rodriguez, L.N. Lopez de Lacalle, A. Celaya, A. Lamikiz, and J. Albizuri, Surface Improvement of Shafts by the Deep Ball-Burnishing Technique, Surf. Coat. Technol., 2012, 206, p 2817–2824CrossRefGoogle Scholar
  11. 11.
    P. Balland, T. Laurent, D. Fabien, and M. Vincent, An Investigation of the Mechanics of Roller Burnishing Through Finite Element Simulation and Experiments, Int. J. Mach. Tools Manufact., 2013, 65, p 29–36CrossRefGoogle Scholar
  12. 12.
    C. Nouguier-Lehon, M. Zarwel, C. Diviani, D. Hertz, H. Zahouani, and T. Hoc, Surface Impact Analysis in Shot Peening Process, Wear, 2013, 302, p 1058–1063CrossRefGoogle Scholar
  13. 13.
    M. Yasuoka, P. Wang, K. Zhang, Z. Qiu, K. Kusaka, Y. Pyoun, and R. Murakami, Improvement of the Fatigue Strength of SUS304 Austenite Stainless Steel Using Ultrasonic Nanocrystal Surface Modification, Surf. Coat. Technol., 2013, 218, p 93–98CrossRefGoogle Scholar
  14. 14.
    B.N. Mordyuk, O.P. Karasevskaya, and G.I. Prokopenko, Structurally Induced Enhancement in Corrosion Resistance of Zr-2.5%Nb Alloy in Saline Solution by Applying Ultrasonic Impact Peening, Mater. Sci. Eng., A, 2013, 559, p 453–461CrossRefGoogle Scholar
  15. 15.
    B.N. Mordyuk, and G.I. Prokopenko, Ultrasonic Impact Treatment—An Effective Method for Nanostructuring the Surface Layers in Metallic Materials. In. M. Aliofkhazraei (Ed.), Handbook of Mechanical Nanostructuring, Wiley-VCH, Weinheim, 2015, p 417-434.Google Scholar
  16. 16.
    B.N. Mordyuk and G.I. Prokopenko, Fatigue Life Improvement of α-Titanium By Novel Ultrasonically Assisted Technique, Mater. Sci. Eng., A, 2006, 437, p 396–405CrossRefGoogle Scholar
  17. 17.
    Kh.M. Rakhimyanov, K.Kh. Rakhimyanov, A.Kh. Rakhimyanov, and A.V. Kutyshkin, Techniques for Setting Modes of Thermal and Deformation Effect at Combined Hardening and Finishing Operations. IOP Conference Series: Material Science Engineering, 2016, 126, p 012015Google Scholar
  18. 18.
    D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, G.I. Prokopenko, YuV Milman, and K.E. Grinkevych, Microstructure Related Enhancement in Wear Resistance of Tool Steel AISI, D2 by Applying Laser Heat Treatment Followed by Ultrasonic Impact Treatment, Surf. Coat. Technol., 2017, 328, p 344–354CrossRefGoogle Scholar
  19. 19.
    D.A. Lesyk, S. Martinez, V.V. Dzhemelinskyi, A. Lamikiz, B.N. Mordyuk, and G.I. Prokopenko, Surface Microrelief and Hardness of Laser Hardened and Ultrasonically Peened AISI, D2 Tool Steel, Surf. Coat. Technol., 2015, 278, p 108–120CrossRefGoogle Scholar
  20. 20.
    R. Kumar, S. Kumar, B. Prakash, and A. Sethuramiah, Assessment of Engine Liner Wear From Bearing Area Curves, Wear, 2000, 239, p 282–286CrossRefGoogle Scholar
  21. 21.
    G.P. Petropoulos, A.A. Torrance, and C.N. Pandazaras, Abbott Curves Characteristics of Turned Surfaces, Int. J. Mach. Tools Manuf., 2003, 43, p 237–243CrossRefGoogle Scholar
  22. 22.
    S. Martinez, A. Lamikiz, E. Ukar, A. Calleja, J.A. Arrizubieta, and L.N. Lopez de Lacalle, Analysis of the Regimes in the Scanner-Based Laser Hardening Process, Opt. Lasers Eng., 2017, 200, p 72–80CrossRefGoogle Scholar
  23. 23.
    S. Martinez, A. Lamikiz, E. Ukar, I. Tabernero, and I. Arrizubieta, Control Loop Tuning by Thermal Simulation Applied to the Laser Transformation Hardening with Scanning Optics Process, Appl. Thermal Eng., 2016, 98, p 49–60CrossRefGoogle Scholar
  24. 24.
    L.F. Golovko and S.O. Lukyanenko, Лaзepнi тexнoлoгiї тa кoмп’ютepнe мoдeлювaння (Laser technology and computer simulation), Vistka, Kyiv, 2009 (in Ukrainian)Google Scholar
  25. 25.
    S. Martinez, D.A. Lesyk, A. Lamikiz, E. Ukar, and V.V. Dzhemelinsky, Hardness Simulation of Over-Tempered Area During Laser Hardening Treatment, Phys. Procedia, 2016, 83, p 1357–1366CrossRefGoogle Scholar
  26. 26.
    S. Santhanakrishnan, F. Kong, and R. Kovacevic, An Experimentally Based Thermo-Kinetic Phase Transformation Model for Multi-Pass Laser Heat Treatment by Using High Power Direct Diode Laser, Int. J. Adv. Manuf. Technol., 2013, 64, p 219–238CrossRefGoogle Scholar
  27. 27.
    V.V. Dzhemelinskyi and D.A. Lesyk, Bизнaчeння oптимaльниx пapaмeтpiв лaзepнo-yльтpaзвyкoвoгo змiцнeння тa oздoблювaння пoвepxoнь виpoбiв (Determining the Optimal Parameters of Laser-Ultrasonic Hardening and Finishing of the Surface Products), Bull. NTUU “KPI” Mech. Eng., 2013, 68(2), p 15–18 (in Ukrainian)Google Scholar
  28. 28.
    R. Licek and A. Popov, Evaluation of Selected Parameters of Structural Quality Steel Turning, Struct. Manuf. Ind. Eng., 2012, 11(2), p 16–19Google Scholar
  29. 29.
    R. Laheurte, P. Darnis, N. Darbois, O. Cahuc, and J. Neauport, Subsurface Damage Distribution Characterization of Ground Surfaces Using Abbott-Firestone, Opt. Express, 2012, 20(12), p 13551–13559CrossRefGoogle Scholar
  30. 30.
    B.N. Mordyuk, G.I. Prokopenko, YuV Milman, M.O. Iefimov, K.E. Grinkevych, A.V. Sameljuk, and I.V. Tkachenko, Wear assessment of Composite Surface Layers in Al-6 Mg Alloy Reinforced with AlCuFe Quasicrystalline Particles: Effects of Particle Size, Microstructure and Hardness, Wear, 2014, 319, p 84–95CrossRefGoogle Scholar
  31. 31.
    Y.V. Mil’man, H.M. Nykyforchyn, K.E. Hrinkevych, O.T. Tsyrul’nyk, I.V. Tkachenko, and V.A. Voloshyn, Assessment of the In-Service Degradation of Pipeline Steel by Destructive and Nondestructive Methods, Mater. Sci., 2012, 47, p 583–589CrossRefGoogle Scholar
  32. 32.
    A.G. Suslov, Инжeнepия пoвepxнocти дeтaлeй (Surface Engineering of Parts), Machine building, Moscow, 2008 (in Russian)Google Scholar
  33. 33.
    V.V. Stupnytskyy and E.M. Mahorkin, Tribological Criterion of Functional-Oriented Technology of Parts in Engineering, Collected Works of Lutsk National Technical University, Res. Notes, 2013, 42, p 305–313Google Scholar
  34. 34.
    J.R. Clark and M.B. Grant, The Effect of Surface Finish on Component Performance, Int. J. Mach. Tools Manuf., 1992, 32(1/2), p 57–66CrossRefGoogle Scholar
  35. 35.
    A. Zmitrowicz, Wear Patterns and Laws of Wear—A Review, J. Theor. Appl. Mech., 2006, 44(2), p 219–253Google Scholar
  36. 36.
    I.V. Kragelsky, Tribology: Lubrication, Friction and Wear, Wiley, Bury St Edmunds, 2005Google Scholar
  37. 37.
    L. Zhou, G. Liu, Z. Han, and K. Lu, Grain Size Effect on Wear Resistance of a Nanostructured AISI52100 steel, Scripta Mater., 2008, 58, p 445–448CrossRefGoogle Scholar
  38. 38.
    R. Autay, M. Kchaou, K. Elleuch, and F. Dammak, Tribological Behaviour of Carbon and Low Alloy Steels: Effect of Mechanical Properties and Test Conditions, Tribology, 2011, 5(4), p 133–140Google Scholar
  39. 39.
    W. Koszela, A. Dzierwa, L. Galda, and P. Pawlus, Experimental Investigation of Oil Pockets Effect on Abrasive Wear Resistance, Tribol. Int., 2012, 46(1), p 145–153Google Scholar
  40. 40.
    K. Zaleski and A. Skoczylas, Effect of Vibration Shot Peening Parameters Upon Shapes of Bearing Curves of Alloy Steel Surface, Adv. Sci. Technol. Res. J., 2015, 9(25), p 20–26CrossRefGoogle Scholar
  41. 41.
    J. Zhang, W. Li, H. Wang, Q. Song, L. Lu, W. Wang, and Z. Liu, A Comparison of the Effects of Traditional Shot Peening and Micro-Shot Peening on the Scuffing Resistance of Carburized and Quenched Gear Steel, Wear, 2016, 368–369, p 253–257CrossRefGoogle Scholar
  42. 42.
    A.M. El-Batahgy, R.A. Ramadan, and A.R. Moussa, Laser Surface Hardening of Tool Steels—Experimental and Numerical Analysis, J. Surf. Eng. Mater. Adv. Technol., 2013, 3(02), p 146–153Google Scholar
  43. 43.
    E. Ukar, A. Lamikiz, L.N. Lopez de Lacalle, D. de l Pozo, and J.L. Arana, Laser Polishing of Tool Steel with CO2 Laser and High-Power Diode Laser, Int. J. Mach. Tools Manuf., 2010, 50, p 115–125CrossRefGoogle Scholar
  44. 44.
    W. Guo, M. Hua, P. Wai-Tat Tse, and A. Chiu Kam Mok, Process Parameters Selection for Laser Polishing DF2 (AISI, O1) by Nd:YAG Pulsed Laser Using Orthogonal Design, Int. J. Manuf. Technol., 2012, 59, p 1009–1023CrossRefGoogle Scholar
  45. 45.
    F.A. Goia and M.S. Fernandes de Lima, Surface Hardening of an AISI, D6 Cold Work Steel Using a Fiber Laser, J. ASTM Int., 2011, 8, p 1–9CrossRefGoogle Scholar
  46. 46.
    G.D. Gureev and D.M. Gureev, Coвмeщeниe лaзepнoгo и yльтpaзвyкoвoгo вoздeйcтвий для тepмooбpaбoтки пoвepxнocти cтaли (The combination of laser and Ultrasonic Action For Heat Treatment of Steel Surface), Vestnik Samara State Univ., 2007, 14(1), p 90–95 ((in Russian))Google Scholar
  47. 47.
    J.H. Lee, J.H. Jang, B.D. Joo, Y.M. Son, and Y.H. Moon, Laser Surface Hardening of AISI, H13 Tool Steel, Trans. Nonferrous Met. Soc. China, 2009, 19, p 917–920CrossRefGoogle Scholar
  48. 48.
    N. Yasavol, A. Abdollah-zadeh, M. Ganjali, and S.A. Alidokht, Microstructure and Mechanical Behavior of Pulsed Laser Surface Melted AISI, D2 Cold Work Tool Steel, Appl. Surf. Sci., 2013, 265, p 653–662CrossRefGoogle Scholar
  49. 49.
    S. Mitrovic, D. Adamovic, F. Zivic, D. Dzunic, and M. Pantic, Friction and Wear Behavior of Shot Peened Surfaces of 36CrNiMo4 and 36NiCrMo16 Alloyed Steels Under Dry and Lubricated Contact Conditions, Appl. Surf. Sci., 2014, 290, p 223–232CrossRefGoogle Scholar
  50. 50.
    A. Amanov, I.S. Cho, Y.S. Pyoun, C.S. Lee, and I.G. Park, Micro-Dimpled Surface by Ultrasonic Nanocrystal Surface Modification and its Tribological Effects, Wear, 2012, 286–287, p 136–144CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • D. A. Lesyk
    • 1
    Email author
  • S. Martinez
    • 2
  • B. N. Mordyuk
    • 3
  • V. V. Dzhemelinskyi
    • 1
  • A. Lamikiz
    • 2
  • G. I. Prokopenko
    • 3
  • K. E. Grinkevych
    • 4
  • I. V. Tkachenko
    • 4
  1. 1.Department of Laser Systems and Applied TechnologiesNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KievUkraine
  2. 2.Department of Mechanical EngineeringUniversity of the Basque CountryBilbaoSpain
  3. 3.Department of Physical Fundamentals of Surface EngineeringG.V. Kurdyumov Institute for Metal Physics, NAS of UkraineKievUkraine
  4. 4.Department of Physics of Metastable Alloys and High-Strength Materials DestructionFrantsevich Institute for Problems of Materials Science, NAS of UkraineKievUkraine

Personalised recommendations