Advertisement

Effect of Reaction Parameters on Morphology and Photoluminescence of Intrinsic and Mn-doped ZnS Microspheres Synthesized by Hydrothermal Method

  • T. Inakhunbi ChanuEmail author
  • Dhrubajyoti Samanta
  • Archana Tiwari
  • Somenath Chatterjee
Article
  • 146 Downloads

Abstract

Intrinsic and Manganese (Mn)-doped ZnS microspheres have been synthesized by hydrothermal method. Thiourea and amino acid, and l-histidine have been used as sulfur source and capping agent, respectively. The synthesized materials have been characterized using x-ray diffraction, field emission scanning electron microscopy, photoluminescence (PL) and UV–Vis spectroscopy. The above-said characterizations conveyed the information regarding the crystallinity, existence of microspheres, size and optical properties of synthesized ZnS and Mn-doped ZnS samples. Formation of microspheres of intrinsic and Mn-doped ZnS has been observed when the reaction parameters are kept at 150 °C for 4 h, and similarly, the micropores have been noticed when reaction parameters are kept at 150 °C for 8 h. The PL of ZnS microspheres shows multiple defect emissions. The nature of PL for pure ZnS has been regulated based on reaction parameters. Doping of Mn in the ZnS enhances the PL emission. This study reveals the role of reaction parameters and effect of Mn doping on tuning the morphology and emission behavior of ZnS microspheres.

Keywords

FESEM Mn-doped ZnS microsphere photoluminescence XRD ZnS microsphere 

Notes

Acknowledgments

The authors sincerely acknowledge the Department of Science & Technology (DST), Government of India, for financial support vide reference no. SR/WOS-A/CS-120/2013 under Women Scientist Scheme to carry out this work.

References

  1. 1.
    C. Li, D. Jiang, L. Zhang, J. Xia, and Q. Li, Controlled Synthesis of ZnS Quantum Dots and ZnS Quantum Flakes with Graphene as a Template, Langmuir, 2012, 28, p 9729–9734CrossRefGoogle Scholar
  2. 2.
    X. Li, X. Wang, Q. Xionga, and P.C. Eklund, Mechanical Properties of ZnS Nanobelts, Nano Lett., 2005, 5, p 1982–1986CrossRefGoogle Scholar
  3. 3.
    Y. Luo, G. Duan, M. Ye, Y. Zhang, and G. Li, Poly(ethylene glycol)-Mediated Synthesis of Hollow ZnS Microspheres, J. Phys. Chem. C, 2008, 112, p 2349–2352CrossRefGoogle Scholar
  4. 4.
    P. Sajan, R.S. Jayasree, S. Agouram, and M.J. Bushiria, Synthesis of Cubic ZnS Microspheres Exhibiting Broad Visible Emission for Bioimaging Applications, Luminescence, 2016, 31, p 544–550CrossRefGoogle Scholar
  5. 5.
    C. Wei, C. Cheng, W. Du, J. Ren, M. Li, J. Dong, and K. Liu, Facile Synthesis of Mesoporous Hierarchical ZnS@β-Ni(OH)2 Microspheres for Flexible Solid State Hybrid Supercapacitors, RSC Adv., 2016, 6, p 101016–101022CrossRefGoogle Scholar
  6. 6.
    J. Li, Y. Fu, X. Shi, Z. Xu, and Z. Zhang, Urchin-Like ZnS Microspheres Decorated with Nitrogen-Doped Carbon: A Superior Anode for Lithium and Sodium Storage, Chem. Eur. J., 2017, 23, p 157–166CrossRefGoogle Scholar
  7. 7.
    Q. Yan, A. Wu, H. Yan, Y. Dong, C. Tian, B. Jianga, and H. Fu, Gelatin-Assisted Synthesis of ZnS Hollow Nanospheres: The Microstructure Tuning, Formation Mechanism and Application for Pt-Free Photocatalytic Hydrogen Production, Cryst. Eng. Comm., 2017, 19, p 461–468CrossRefGoogle Scholar
  8. 8.
    L. Yang, J. Han, T. Luo, M. Li, J. Huang, F. Meng, and J. Liu, Morphogenesis and Crystallization of ZnS Microspheres by a Soft Template-Assisted Hydrothermal Route: Synthesis, Growth Mechanism, and Oxygen Sensitivity, Chem. Asian J., 2009, 4, p 174–180CrossRefGoogle Scholar
  9. 9.
    Y. Fang, Z. Xia, F. Yu, J. Sha, Y. Wang, and W. Zhou, Formation Mechanism of Hollow Microspheres Consisting of ZnO Nanosheets, Cryst. Eng. Comm., 2012, 14, p 8615–8619CrossRefGoogle Scholar
  10. 10.
    L. Wang, P. Wang, B. Huang, X. Ma, G. Wang, Y. Dai, X. Zhang, and X. Qina, Synthesis of Mn-Doped ZnS Microspheres with Enhanced Visible Light Photocatalytic Activity, Appl. Surf. Sci., 2017, 391, p 557–564CrossRefGoogle Scholar
  11. 11.
    T.I. Chanu, D. Samanta, A. Tiwari, and S. Chatterjee, Effect of Reaction Parameters on Photoluminescence and Photocatalytic Activity of Zinc Sulfide Nanosphere Synthesized by Hydrothermal Route, Appl. Surf. Sci., 2017, 391, p 548–556CrossRefGoogle Scholar
  12. 12.
    L.M. Gan, B. Liu, C.H. Chew, S.J. Xu, S.J. Chua, G.L. Loy, and G.Q. Xu, Enhanced Photoluminescence and Characterization of Mn-Doped ZnS Nanocrystallites Synthesized in Microemulsion, Langmuir, 1997, 13, p 6427–6431CrossRefGoogle Scholar
  13. 13.
    A.B. Ahmed, H. Feki, Y. Abid, H. Boughzala, and C. Minot, Crystal Studies, Vibrational Spectra and Non-linear Optical Properties of l-Histidine Chloride Monohydrate, Spectrochim. Acta Part A, 2010, 75, p 293–298CrossRefGoogle Scholar
  14. 14.
    D. Samanta, T.I. Chanu, and S. Chatterjee, Citrus Limetta Juice as Capping Agent in Hydrothermal Synthesis of ZnS Nanosphere for Photocatalytic Activity, Mater. Res. Bull., 2017, 88, p 85–90CrossRefGoogle Scholar
  15. 15.
    A. Goudarzi, G.M. Aval, S.S. Park, M.C. Choi, R. Sahraei, M.H. Ullah, A. Avane, and C.S. Ha, Low-Temperature Growth of Nanocrystalline Mn-Doped ZnS Thin Films Prepared by Chemical Bath Deposition and Optical Properties, Chem. Mater., 2009, 21, p 2375–2385CrossRefGoogle Scholar
  16. 16.
    R.K. Chandrakar, R.N. Baghel, V.K. Chandra, and B.P. Chandra, Synthesis, Characterization and Photoluminescence Studies of Mn Doped ZnS Nanoparticles, Superlattices Microstruct., 2010, 86, p 256–269CrossRefGoogle Scholar
  17. 17.
    H.Y. Chen, S. Maiti, and D.H. Son, Doping Location-Dependent Energy Transfer Dynamics in Mn-Doped CdS/ZnS Nanocrystals, ACS Nano, 2012, 6, p 583–591CrossRefGoogle Scholar
  18. 18.
    S. Prasanth, P. Irshad, D.R. Raj, T.V. Vineeshkumar, R. Philip, and C. Sudarsanakumar, Nonlinear Optical Property and Fluorescence Quenching Behavior of PVP Capped ZnS Nanoparticles Co-Doped with Mn2+ and Sm3+, J. Lumin., 2015, 166, p 167–175CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, C. Pan, Y. Zhang, and W. He, Self-Template Hydrothermal Synthesis of ZnS Microspheres, Cryst. Res. Technol., 2011, 46, p 718–722CrossRefGoogle Scholar
  20. 20.
    K.P. Ghoderao, S.N. Jamble, J.P. Sawant, and R.B. Kale, Solution Assisted Growth Mechanism and Characterization of ZnS Microspheres, Mater. Res. Express, 2017, 4, p 025026CrossRefGoogle Scholar
  21. 21.
    J. Huo, L. Wang, E. Irran, H. Yu, J. Gao, D. Fan, B. Li, J. Wang, W. Ding, A.M. Amin, C. Li, and L. Ma, Hollow Ferrocenyl Coordination Polymer Microspheres with Micropores in Shells Prepared by Ostwald Ripening, Angew. Chem. Int. Ed., 2010, 49, p 9237–9241CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • T. Inakhunbi Chanu
    • 1
    Email author
  • Dhrubajyoti Samanta
    • 1
  • Archana Tiwari
    • 2
  • Somenath Chatterjee
    • 1
    • 3
  1. 1.Centre for Materials Science and Nanotechnology, Sikkim Manipal Institute of TechnologySikkim Manipal UniversityGangtokIndia
  2. 2.Department of PhysicsSikkim UniversityGangtokIndia
  3. 3.Electronics and Communication Engineering Department, Sikkim Manipal Institute of TechnologySikkim Manipal UniversityGangtokIndia

Personalised recommendations