Skip to main content

Advertisement

Log in

An EBSD Evaluation of the Microstructure of Crept Nimonic 101 for the Validation of a Polycrystal–Plasticity Model

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 11 March 2020

This article has been updated

Abstract

Nimonic 101 is one of the early nickel-based superalloys developed for the use in gas turbines. In such environments, the material is exposed to a combination of both high temperatures and mechanical loads for a long duration. Hence, thermal creep is of the utmost concern as it often limits service life. This study focuses on creep tests, carried out on Nimonic 101 at different temperatures under a constant tensile load of 735 MPa. To characterize the microstructural evolution, electron backscatter diffraction (EBSD) measurements were employed before and after loading. At higher temperatures, a significant change of the microstructure was observed. The grains elongated and aligned their orientation along the load axis. In parallel, a crystal plasticity material model has been set up in the classical large deformation framework. Modeling results are compared to the acquired EBSD data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 11 March 2020

    The original article has been corrected.

  • 11 March 2020

    The original article has been corrected.

References

  1. C. Lechner and J. Seume, Stationäre Gasturbinen (Stationary Gas Turbines), Springer, Berlin, 2010 (in German)

    Book  Google Scholar 

  2. T.M. Pollock and S. Tin, Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties, J. Propuls. Power, 2006, 22(2), p 361-374

    Article  Google Scholar 

  3. K.H. Kloos, J. Granacher, and Th Windecker, Hochtemperaturverhalten von Werkstoffen aus Neuartig Gefertigten Gasturbinenschaufeln, Mat. Wiss. Werkstofftech., 1994, 25, p 235-243 (in German)

    Article  Google Scholar 

  4. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys, Metall. Mater. Trans. A, 2009, 40A, p 1588-1603

    Article  Google Scholar 

  5. A. Raffaitin, D. Monceau, F. Crabos, and E. Andrieu, The Effect of Thermal Cycling on the High-Temperature Creep Behavior of a Single Crystal Nickel-Based Superalloy, Scr. Mater., 2007, 56(4), p 277-280

    Article  Google Scholar 

  6. G.J. Pataky, H. Sehitoglu, and H.J. Maier, Creep Deformation and Mechanisms in Haynes 230 at 800 and 900 °C, J. Nucl. Mater., 2013, 443, p 484-490

    Article  Google Scholar 

  7. B.F. Dyson and T.B. Gibbons, Tertiary Creep in Nickel-Base superalloys: Analysis of Experimental Data and Theoretical Synthesis, Acta Met., 1987, 35(9), p 2355-2369

    Article  Google Scholar 

  8. R. Sharghi-Moshtaghin and S. Asgari, The Influence of Thermal Exposure on the γ′ Precipitates Characteristics and Tensile Behavior of Superalloy IN-738LC, J. Mater. Process. Technol., 2004, 147, p 343-350

    Article  Google Scholar 

  9. A. Nitz, U. Lagerpusch, and E. Nembach, CRSS Anisotropy and Tension/Compression Asymmetry of a Commercial Superalloy, Acta Mater., 1998, 46(13), p 4769-4779

    Article  Google Scholar 

  10. W. Hoffelner, E. Kny, R. Strickler, and W.J. McCall, Effects of Aging Treatments on the Microstructure of the Ni-Base Superalloy IN-738, Z. Werkstofftech., 1979, 10, p 84-92

    Article  Google Scholar 

  11. R.A. Stevens and P.E.J. Flewitt, The Effects of γ′ Precipitate Coarsening During Isothermal Aging and Creep of the Nickel-Base Superalloy IN-738, Mater. Sci. Eng., 1979, 37, p 237-247

    Article  Google Scholar 

  12. A. Wisniewski and J. Beddoes, Influence of Grain Boundary Morphology on Creep of a Wrought Ni-Based Superalloy, Mater. Sci. Eng. A, 2009, 2009, p 510-511

    Google Scholar 

  13. R.K. Mishra and R. Kubic, Jr., In Situ EBSD of Microstructure Evolution During Deformation, Microsc. Microanal., 2008, 14, p 552-553

    Article  Google Scholar 

  14. D. Kobayashi, M. Miyabe, Y. Kagiya, R. Sugiura, and A.T. Yokobory, Jr., An Assessment and Estimation of the Damage Progression Behavior of IN738LC Under Various Applied Stress Conditions Based on EBSD Analysis, Metall. Mater. Trans. A, 2013, 44A, p 3123-3135

    Article  Google Scholar 

  15. S.I. Wright, M.M. Nowell, and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17, p 316-329

    Article  Google Scholar 

  16. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modelling: Theory, Experiments, Applications, Acta Mater., 2010, 58(4), p 1152-1211

    Article  Google Scholar 

  17. E. Lehmann, D. Faßmann, S. Löhnert, M. Schaper, and P. Wriggers, Texture Development and Formability Prediction for Pre-textured Cold Rolled Body-centred Cubic Steel, Int. J. Eng. Sci., 2013, 68, p 24-37

    Article  Google Scholar 

  18. D. Raabe, Z. Zhao, and W. Mao, On the Dependence of in-Grain Subdivision and Deformation Texture of Aluminum on Grain Interaction, Acta Mater., 2002, 50(17), p 4379-4394

    Article  Google Scholar 

  19. J.-B. le Graverend, J. Cormier, F. Gallerneau, P. Villechaise, S. Kruch, and J. Mendez, A Microstructure-Sensitive Constitutive Modeling of the Inelastic Behavior of Single Crystal Nickel-Based Superalloys at Very High Temperature, Int. J. Plast., 2014, 59, p 55-83

    Article  Google Scholar 

  20. M. Shenoy, Y. Tjiptowidjojo, and D. McDowell, Microstructure-Sensitive Modeling of Polycrystalline IN 100, Int. J. Plast., 2008, 24(10), p 1694-1730

    Article  Google Scholar 

  21. R. MacKay and R.D. Maier, The Influence of Orientation on the Stress Rupture Properties of Nickel Base Superalloy Single Crystals, Metall. Trans. A, 1982, 13A, p 1747-1754

    Article  Google Scholar 

  22. J. Preußner, Y. Rudnik, H. Brehm, R. Völkl, and U. Glatzel, A Dislocation Density Based Material Model to Simulate the Anisotropic Creep Behaviour of Single-Phase and Two-Phase Single Crystals, Int. J. Plast., 2009, 25(5), p 973-994

    Article  Google Scholar 

  23. I.N. Vladimirov, S. Reese, and G. Eggeler, Constitutive Modelling of the Anisotropic Creep Behaviour of Nickel-Base Single Crystal Superalloys, Int. J. Mater. Sci., 2009, 51, p 305-313

    Google Scholar 

  24. A.W. Judge, Small Gas Turbines and Free Piston Engines, Chapman & Hall Ltd, London, 1960, p 328

    Google Scholar 

  25. S. Straub, W. Bluhm, H.J. Maier, T. Ungar, A. Borbély, and H. Renner, Long-Range Internal Stresses in Cell and Subgrain Structures of Copper During Deformation at Constant Stress, Acta Mater., 1996, 44(11), p 4337-4350

    Article  Google Scholar 

  26. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud, Evaluation of Finite Element Based Analysis of 3D Multicrystalline Aggregates Plasticity: Application to Crystal Plasticity Model Identification and the Study of Stress and Strain Fields Near Grain Boundaries, Int. J. Plast., 2005, 21(4), p 691-722

    Article  Google Scholar 

  27. D.H. Chung and W.R. Buessem, The Elastic Anisotropy of Crystals, J. Appl. Phys., 1967, 38(5), p 2010-2012

    Article  Google Scholar 

  28. B.F. Dyson, Micromechanism-Quantification for Creep Constitutive Equations. in IUTAM Symposium on Creep in Structures, p. 3-16 (2001)

  29. A.M. Cuitino and M. Ortiz, Constitutive Modeling of L12 Intermetallic Crystals, Mater. Sci. Eng. A, 1993, 170, p 111-123

    Article  Google Scholar 

  30. B.F. Dyson, Microstructure Based Creep Constitutive Model for Precipitation Strengthened Alloys: Theory and Application, Mater. Sci. Technol., 2009, 25(2), p 213-220

    Article  Google Scholar 

  31. X. Feaugas, On the Origin of the Tensile Flow Stress in the Stainless Steel AISI, 316L at 300K: Backstress and Effective Stress, Acta Metall., 1999, 47(13), p 3617-3632

    Google Scholar 

  32. L. Kubin and B. Devincre, Toward a physical model for strain hardening in fcc crystals, Mater. Sci. Eng. A, 2008, 483-484, p 19-24

    Article  Google Scholar 

  33. P. Franciosi and A. Zaoui, Multislip Tests on Copper crystals: A Junctions Hardening Effect, Acta Metall., 1982, 30, p 2141-2151

    Article  Google Scholar 

  34. N. Matan, D.C. Cox, P. Carter, M.A. Rist, C.M.F. Rae, and R.C. Reed, Creep pf CMSX-4 Superalloy Single Crystals: Effects of Misorientation and Temperature, Acta Mater., 1999, 45(5), p 1549-1563

    Article  Google Scholar 

  35. J.R. Rice, Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity, J. Mech. Phys. Solids, 1971, 19, p 433-455

    Article  Google Scholar 

  36. A. Bertram, Finite Thermoplasticity Based on Isomorphisms, Int. J. Plast., 2003, 19(11), p 2027-2050

    Article  Google Scholar 

  37. J. Korelc and P. Wriggers, Automation of Finite Element Methods, Springer, Berlin, 2016

    Book  Google Scholar 

  38. C.H. da Silva Santos, M.S. Gonçalves, and H.E. Hernandez-Figueroa, Designing Novel Photonic Devices by Bio-Inspired Computing, IEEE Photon. Technol. Lett., 2010, 15(22), p 1177-1179

    Article  Google Scholar 

  39. S.G. Johnson, The NLopt Nonlinear-Optimization Package. https://ab-initio.mit.edu/nlopt, Version 2.4.2

  40. R. Quey, P.R. Dawson, and F. Barbe, Large-Scale 3D Random Polycrystals for the Finite Element Method: Generation, Meshing and Remeshing, Comput. Method. Appl. Mech. Eng., 2011, 200(17-20), p 1729-1745

    Article  Google Scholar 

  41. A.M. Borzdyka, L.B. Gecov, Relaxation of Stresses in Metals and Alloys. in Metallurgy, Moscow, p. 304 (1972) (in Russian)

  42. W. Hermann, H.G. Sockel, J. Han, and A. Bertram, Elastic Properties and Determination of Elastic Constants of Nickel-Base Superalloys by a Free-Free Beam Technique, Superalloys, 1996, 5, p 229-238

    Google Scholar 

  43. G.B. Viswanathan, P.M. Sarosi, D.H. Whitis, and M.J. Mills, Deformation Mechanisms at Intermediate Creep Temperatures in the Ni-Base Superalloy René 88 DT, Mater. Sci. Eng. A, 2005, 400, p 489-495

    Article  Google Scholar 

  44. R.R. Unocic, G.B. Viswanathan, P.M. Sarosi, S. Karthikeyan, J. Li, and M.J. Millis, Mechanisms of Creep Deformation in Polycrystalline Ni-Base Disk Superalloys, Mater. Sci. Eng. A, 2008, 483, p 25-32

    Article  Google Scholar 

  45. M.I. Alymov, A.I. Epishin, G. Nolze, T. Link, S.S. Bedov, and A.B. Ankudinov, Electron Microscopy Investigation of the Structure of a Compact Extruded from Nanopowder of Nickel, Russian Nanotechnol., 2007, 2, p 124-129 (in Russian)

    Google Scholar 

  46. Y.M. Vainblat, T.B. Sagalova, and L.B. Ber, Fibrous Structure and Texture of Extruded Rods of Alloy AK8, Metalloved. Term. Obrab. Metalloved., 1969, 2, p 31-34

    Google Scholar 

  47. G. Lin and K.S. Havner, On the Evolution of Texture and Yield Loci in Axisymmetric Deformation of FCC Polycrystals, Int. J. Plast., 1994, 10(5), p 471-498

    Article  Google Scholar 

  48. T. Böhlke, G. Risy, and A. Bertram, A Texture Component Model for Anisotropic Polycrystal Plasticity, Comput. Mater. Sci., 2005, 32, p 284-293

    Article  Google Scholar 

  49. H.J. Bunge, Some Applications of the Taylor Theory of Polycrystal Plasticity, Krist. Tech., 1970, 5(1), p 145-175

    Article  Google Scholar 

  50. D.M. Knowles and S. Gunturi, The Role of 〈112〉{111} Slip in the Asymmetric Nature of Creep of Single Crystal Superalloy CMSX-4, Mater. Sci. Eng., 2002, 328, p 223-237

    Article  Google Scholar 

  51. V. Sass and U. Glatzel, Anisotropic Creep Properties of the Nickel-Base Superalloy CMSX-4, Acta Metall., 1996, 44, p 1967-1977

    Google Scholar 

  52. Q. Qin and V. Bassani, Non-schmid Yield Behavior in Single Crystals, J. Mech. Phys. Solids, 1992, 40(4), p 813-833

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of this study by the German Science Foundation (DFG) under contracts MA1175/63-1 and WR19/57-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Reschka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reschka, S., Munk, L., Wriggers, P. et al. An EBSD Evaluation of the Microstructure of Crept Nimonic 101 for the Validation of a Polycrystal–Plasticity Model. J. of Materi Eng and Perform 26, 6087–6098 (2017). https://doi.org/10.1007/s11665-017-3046-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3046-3

Keywords

Navigation