Skip to main content
Log in

Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Bell, Surface Engineering of Austenitic Stainless Steel, Surf. Eng., 2002, 18, p 415–422

    Article  Google Scholar 

  2. Y. Kallali, A. Büyüksagis, and Y. Yalçin, Corrosion and Wear Behaviors of Boronized AISI, 316L Stainless Steel, Met. Mater. Int., 2013, 19, p 1053–1061

    Article  Google Scholar 

  3. Y. Kayali, A. Büyüksagis, I. Günes, and Y. Yalçin, Investigation of Corrosion Behaviors at Different Solutions of Boronized AISI, 316L Stainless Steel, Prot. Met. Phys. Chem. Surf., 2013, 49, p 348–358

    Article  Google Scholar 

  4. I. Mejía-Caballero, M. Palomar-Parvade, J. Martínez-Trinidad, M. Romero-Romo, R. Pérez Pasten-Borja, L. Lartundo-Rojas, C. López-Garcia, and I. Campos-Silva, Corrosion Behavior of AISI, 316 L Borided and Non-Borided Steels Immersed in a Simulated Body Fluid Solution, Surf. Coat. Technol., 2015, 280, p 384–395

    Article  Google Scholar 

  5. I. Campos-Silva, G. Rodriguez-Castro, in Boriding to Improve the Mechanical Properties and Corrosion Resistance of Steel, ed. by E. Mittemeijer, A. Somers. Thermochemical Surface Engineering of Steels, 1st ed, (Woodhead Publishing Series in Metals and Surface Engineering, UK, 2015), pp. 651–702

  6. I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M.A. Doñu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, and M.Y. Jiménez-Reyes, Formation and Kinetics of FeB/Fe2B Layers and Diffusion Zone at the Surface of AISI, 316 Borided Steels, Surf. Coat. Technol., 2010, 205, p 403–412

    Article  Google Scholar 

  7. M. Keddam, Simulation of the Growth Kinetics of the (FeB/Fe2B) Bilayer Obtained on a Borided Stainless Steel, Appl. Surf. Scie., 2011, 257, p 2004–2010

    Article  Google Scholar 

  8. I. Gunes and I. Yildiz, Rate of Growth of Boride Layers on Stainless Steels, Oxid. Commun., 2015, 38(4A), p 2189–2198

    Google Scholar 

  9. Z. Nait Abdellaha, M. Keddam, and A. Elias, Modelling the Boronizing Kinetics in AISI, 316 Stainless Steel, Acta Phys. Pol. A, 2012, 122(3), p 588–592

    Article  Google Scholar 

  10. O. Ozdemir, M.A. Omar, M. Usta, S. Zeytin, C. Bindal, and A.H. Ucisik, An Investigation on Boriding Kinetics of AISI, 316 Stainless Steel, Vacuum, 2009, 83, p 175–179

    Article  Google Scholar 

  11. E. Garcia-Bustos, M. Figueroa-Guadarrama, G. Rodríguez-Castro, O. Gómez-Vargas, E. Gallardo-Hernández, and I. Campos-Silva, The Wear Resistance of Boride Layers Measured by the Four-Ball Test, Surf. Coat. Technol., 2013, 215, p 241–246

    Article  Google Scholar 

  12. M. Tabur, M. Izciler, F. Gul, and I. Karacan, Abrasive Wear Behavior of Boronized AISI, 8620 Steel, Wear, 2009, 266, p 1106–1112

    Article  Google Scholar 

  13. M. Ulutan, M. Yildirim, O. Elik, and S. Buytoz, Tribological Properties of Borided AISI, 4140 Steel with the Powder Pack-Boriding Method, Tribol. Lett., 2010, 38, p 231–239

    Article  Google Scholar 

  14. C. Martini, G. Palombarini, G. Poli, and D. Prandstraller, Sliding and Abrasive Wear Behaviour of Boride Coatings, Wear, 2004, 256, p 608–613

    Article  Google Scholar 

  15. I. Gunes and I. Yildiz, Investigation of Adhesion and Tribological Behavior of Borided AISI, 310 Stainless Steel, Revista materia, 2016, 21, p 61–71

    Article  Google Scholar 

  16. A. Günen, M. Gök, A. Erdoğan, B. Kurt, and N. Orhan, Investigation of Microabrasion Wear Behavior of Boronized Stainless Steel with Nanoboron Powders, Tribol. T., 2013, 56, p 400–409

    Article  Google Scholar 

  17. G. Rodríguez-Castro, C. Reséndiz-Calderon, L. Jiménez-Tinoco, A. Meneses-Amador, E. Gallardo-Hernández, and I. Campos-Silva, Micro-Abrasive Wear Resistance of CoB/Co2B Coatings Formed in CoCrMo Alloy, Surf. Coat. Technol., 2015, 284, p 258–263

    Article  Google Scholar 

  18. K. Adachi and I. Hutchings, Sensitivity of wear rates in the micro-scale abrasion test to test conditions and material hardness, Wear, 2005, 258, p 318–321

    Article  Google Scholar 

  19. R. Trezona, D. Allsopp, and I. Hutchings, Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test, Wear, 1999, 225–229, p 205–214

    Article  Google Scholar 

  20. K. Bose and R. Wood, Optimum tests conditions for attaining uniform rolling abrasion in ball cratering tests on hard coatings, Wear, 2005, 258, p 322–332

    Article  Google Scholar 

  21. M. Gee, A. Gant, I. Hutchings, R. Bethke, K. Schiffman, K. Van Acker, S. Poulat, Y. Gachon, and J. von Stebut, Progress towards standardization of ball cratering, Wear, 2003, 255, p 1–13

    Article  Google Scholar 

  22. M. Gee, A.J. Gant, I.M. Hutchings, Y. Kusano, K. Schiffman, K. Van Acker, S. Poulat, Y. Gachon, J. von Stebut, P. Hatto, and G. Plint, Results from an interlaboratory exercise to validate the micro-scale abrasion test, Wear, 2005, 259, p 27–35

    Article  Google Scholar 

  23. I. Campos-Silva, M. Flores-Jiménez, G. Rodríguez-Castro, E. Hernández-Sánchez, J. Martínez-Trinidad, and R. Tadeo-Rosas, Improved fracture toughness of boride coating developed with a diffusion annealing process, Surf. Coat. Technol., 2013, 237, p 429–439

    Article  Google Scholar 

  24. International Organization for Standardization – ISO. ISO 14577-1: metallic materials: instrumented indentation test for hardness and materials parameters. Part 1: test method. Geneva: ISO; 2002

  25. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7, p 1564–1583

    Article  Google Scholar 

  26. I.E. Campos-Silva and G.A. Rodrı´guez-Castro, Boriding to Improve the Mechanical Properties and Corrosion Resistance of Steels, Thermochemical Surface Engineering of Steels, 1st ed., E.J. Mittemeijer and M.A.J. Somers, Ed., Woodhead-Elsevier Publishing, Cambridge, 2015, p 658–661.

  27. C. Badini, C. Gianoglio, and G. Pradelli, Distribution of Chromium and Nickel Between the Phases Present in the Borided Layer of Alloy Steels, Metall. Sci. Technol., 1985, 3, p 10–15

    Google Scholar 

  28. J. Rus, C.L. Leal, and D.N. Tsipas, Boronizing of 304 Steel, J. Mater. Sci. Lett., 1985, 4(5), p 658–661

    Article  Google Scholar 

  29. C. Martini, G. Palombarini, and M. Carbucicchio, Mechanism of Thermochemical Growth of Iron Borides on Iron, J. Mater. Sci., 2004, 39(3), p 933–937

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council of Science and Technology [Research Grant 183836] and the Instituto Politécnico Nacional [Research Grants 20170851 and 20170688] in Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Rodríguez-Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reséndiz-Calderon, C.D., Rodríguez-Castro, G.A., Meneses-Amador, A. et al. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel. J. of Materi Eng and Perform 26, 5599–5609 (2017). https://doi.org/10.1007/s11665-017-3004-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3004-0

Keywords

Navigation