Skip to main content

Advertisement

Log in

Surface Layers of Zr-18%Nb Alloy Modified by Ultrasonic Impact Treatment: Microstructure, Hardness and Corrosion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Near-surface layers in Zr-18%Nb alloy were modified using ultrasonic impact treatment (UIT). The effects of the UIT processing time on a microstructural formation, omega/alpha precipitations, microhardness and corrosion are analyzed. XRD analysis, TEM and SEM observations and EDX characterization allow establishing the links between the microstructure, microhardness and corrosion behavior of the surface layers formed. At the strain extent up to e ≈ 0.3, structural formation occurs under influence of deformation induced heating, which facilitates omega precipitation in beta phase and mechanically induced oxygen transport and oxide formation. XRD analysis reveals moderate compressive residual stresses (− 160 MPa) and pronounced {110} texture after the UIT process. Generation of dislocations and hindering of their movement by nanoscale omega precipitates manifest themselves as the broadening of diffraction peaks occurred mainly owing to the lattice microstrains, and they provide marked strain hardening. The enhanced anticorrosion properties of Zr-18%Nb alloy in saline solution were concluded to be a result of the formation of a protective oxide film, {110} texture and compressive stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.K. Dey and S. Banerjee, Decomposition of the β Phase in Zr-20%Nb, J. Nucl. Mater., 1984, 125(2), p 219–227

    Article  Google Scholar 

  2. Y.H. Jeong, H.G. Kim, D.J. Kim, B.K. Choi, and J.H. Kim, Influence of Nb Concentration in the α-Matrix on the Corrosion Behavior of Zr-xNb Binary Alloys, J. Nucl. Mater., 2003, 323(1), p 72–80

    Article  Google Scholar 

  3. R. Tewari, D. Srivastava, G.K. Dey, J.K. Chakravarty, and S. Banerjee, Microstructural Evolution in Zirconium Based Alloys, J. Nucl. Mater., 2008, 383(1–2), p 153–171

    Article  Google Scholar 

  4. S. Cai, M.R. Daymond, A.K. Khan, R.A. Holt, and E.C. Oliver, Elastic and Plastic Properties of βZr at Room Temperature, J. Nucl. Mater., 2009, 393(1), p 67–76

    Article  Google Scholar 

  5. S.K. Sahoo, V.D. Hiwarkar, L. Jain, I. Samajdar, P. Pant, G.K. Dey, D. Srivastava, R. Tewari, and S. Banerjee, Deformed Microstructures of Two-Phase Zr-2.5Nb Alloy: Effects of the Second Phase Hardness, J. Nucl. Mater., 2010, 404(3), p 222–230

    Article  Google Scholar 

  6. T.P. Chernyaeva, V.M. Grytsyna, E.A. Mykhaylov, R.L. Vasilenko, and E.A.Slabospitskaya, Problems of Atomic Science and Technol., 2011, 2(97), p 95–107, (in Russian)

  7. N. Stojilovic, E.T. Bender, and R.D. Ramsier, Surface Chemistry of Zirconium, Progr. Surf. Sci., 2005, 78(3–4), p 101–184

    Article  Google Scholar 

  8. L. Saldaña, A. Méndez-Vilas, L. Jiang, M. Multigner, J.L. González-Carrasco, M.T. Pérrez-Prado, M.L. González-Martín, L. Munuera, and N. Vilaboa, In Vitro Biocompatibility of an Ultrafine Grained Zirconium, Biomaterials, 2007, 28(30), p 4343–4354

    Article  Google Scholar 

  9. V. Braic, M. Balaceanu, M. Braic, C. Vitelaru, I. Titorencu, V. Pruna, A.C. Parau, and C. Fanara, Characterization of the Ti-10Nb-10Zr-5Ta Alloy for Biomedical Applications. Part 2: Wettability, Tribological Performance and Biocompatibility, J. Mater. Eng. Perform., 2014, 23(1), p 326–332

    Article  Google Scholar 

  10. E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biocompatibility of β-Stabilizing Elements of Titanium Alloys, Biomaterials, 2004, 25(26), p 5705–5713

    Article  Google Scholar 

  11. B.A. Cheadle and S.A. Aldridge, The Transformation and Age Hardening Behaviour of Zr-19 wt%Nb, J. Nucl. Mater., 1973, 47(2), p 255–258

    Article  Google Scholar 

  12. B.B. Straumal, A.S. Gornakova, A.A. Mazilkin, O.B. Fabrichnaya, M.J. Kriegel, B. Baretzky, J.-Z. Jiang, and S.V. Dobatkin, Phase Transformations in the Severely Plastically Deformed Zr-Nb Alloys, Mater. Lett., 2012, 81, p 225–228

    Article  Google Scholar 

  13. YuF Bychkov, V.A. Ivanov, and A.N. Rozanov, Reversibility of β-ω Transformation in Zr-16%Nb Alloy, Phys. Metals Metalloved., 1964, 17(4), p 547–553 (in Russian)

    Google Scholar 

  14. S.L. Sass, The Structure and Decomposition of Zr and Ti b.c.c, J. Less-Common Metals, 1972, 28(1), p 157–173 ((in Russian))

    Article  Google Scholar 

  15. B.M. Mordyuk, O.P. Karasevska, P.E. Rudoi, I.O. Skyba, and H.H. Kamins’kyi, Influence of Ultrasonic Vibrations on the Phase Transformation and Strain Hardening of a Zr18Nb Alloy in Tension, Mater. Sci., 2013, 48(4), p 546–554

    Article  Google Scholar 

  16. G.K. Dey, R. Tewari, S. Banerjee, G. Jyoti, S.C. Gupta, K.D. Joshi, and S.K. Sikka, Formation of a Shock Deformation Induced ω Phase in Zr20Nb Alloy, Acta Mater., 2004, 52(18), p 5243–5254

    Article  Google Scholar 

  17. N.I. Khripta, B.N. Mordyuk, O.P. Karasevskaya, G.I. Prokopenko, and I.A. Skiba, Effect of Structural and Phase Transformations Induced by Ultrasonic Impact Peening on the Corrosion Resistance of Zr-based Alloys, Metallofiz. Noveishie Tekhnol., 2008, 30, p 369–382 (in Russian)

    Google Scholar 

  18. Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi, Effects of ω-phase Precipitation on β→α, α′′ Transformations in a Metastable β Titanium Alloy, Mater, Mater. Sci. Eng., A, 2001, 312(1-2), p 182–188

    Article  Google Scholar 

  19. E. Sukedai, D. Yoshimitsu, H. Matsumoto, H. Hashimoto, and M. Kiritani, β to ω Phase Transformation Due to Aging in a Ti-Mo Alloy Deformed in Impact Compression, Mater. Sci. Eng., A, 2003, 350(1-2), p 133–138

    Article  Google Scholar 

  20. M. Tane, T. Nakano, S. Kuramoto, M. Niinomi, N. Takesue, and H. Nakajima, ω Transformation in Cold-Worked Ti-Nb-Ta-Zr-O Alloys With Low Body-Centered Cubic Phase Stability and its Correlation With Their Elastic Properties, Acta Mater., 2013, 61(1), p 139–150

    Article  Google Scholar 

  21. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, ω-Assisted Nucleation and Growth of α Precipitates in the Ti-5Al-5Mo-5 V-3Cr-0.5Fe β Titanium Alloy, Acta Mater., 2009, 57(7), p 2136–2147

    Article  Google Scholar 

  22. M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, and E.V. Pereloma, Strain Rate Dependence of Deformation-Induced Transformation and Twinning in a Metastable Titanium Alloy, Acta Mater., 2016, 104, p 190–200

    Article  Google Scholar 

  23. T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima, and J.L. Soubeyroux, Characterization of Nanophase Precipitation in a Metastable β Titanium-Based Alloy by Electrical Resistivity, Dilatometry Neutr. Diffr. Scrip. Mater., 2008, 58(4), p 271–274

    Article  Google Scholar 

  24. B.K. Kad, J.-M. Gebert, M.T. Perez-Prado, M.E. Kassner, and M.A. Meyers, Ultrafine-Grain-Sized Zirconium by Dynamic Deformation, Acta Mater., 2006, 54(16), p 4111–4127

    Article  Google Scholar 

  25. T.A. Hayes, M.E. Kassner, D. Amick, and R.S. Rosen, The Thermal Stability of Surface Deformed Zirconium, J. Nucl. Mater., 1997, 246(1), p 60–69

    Article  Google Scholar 

  26. P. Jiang, Q. Wei, Y.S. Hong, J. Lu, and X.L. Wu, In Situ Synthesis of Nanocrystalline Intermetallic Layer During Surface Plastic Deformation of Zirconium, Surf. Coat. Technol., 2007, 202(3), p 583–589

    Article  Google Scholar 

  27. B.N. Mordyuk, O.P. Karasevskaya, G.I. Prokopenko, and N.I. Khripta, Ultrafine-Grained Textured Surface Layer on Zr-1% Nb Alloy Produced by Ultrasonic Impact Peening for Enhanced Corrosion Resistance, Surf. Coat. Technol., 2012, 210, p 54–61

    Article  Google Scholar 

  28. B.N. Mordyuk, O.P. Karasevskaya, and G.I. Prokopenko, Structurally Induced Enhancement in Corrosion Resistance of Zr–2.5% Nb Alloy in Saline Solution by Applying Ultrasonic Impact Peening, Mater. Sci. Eng., A, 2013, 559, p 453–461

    Article  Google Scholar 

  29. S. Cai, M.R. Daymond, and R.A. Holt, Deformation of High β-Phase Fraction Zr-Nb Alloys at Room Temperature, Acta Mater., 2012, 60(8), p 3355–3369

    Article  Google Scholar 

  30. L. Zhang and Y. Han, Twins Formation and Their Role in Nanostructuring of Zirconium, Mater. Sci. Eng., A, 2009, 523(1-2), p 130–133

    Article  Google Scholar 

  31. Y. Choi, E.J. Shin, and H. Inoue, Study on the Effect of Crystallographic Texture on the Corrosion Behaviour of Pilgered Zirconium by Neutron Diffraction, Phys. B Condensed Matter., 2006, 385-386(Part 1), p 529–531

    Article  Google Scholar 

  32. P. Kar, K. Wang, and H. Liang, Force-Dominated Non-Equilibrium Oxidation Kinetics of Tantalum, Electrochim. Acta, 2008, 53(16), p 5084–5091

    Article  Google Scholar 

  33. M.A. Vasylyev, S.P. Chenakin, and L.F. Yatsenko, Ultrasonic Impact Treatment Induced Oxidation of Ti6Al4 V Alloy, Acta Mater., 2016, 103, p 761–774

    Article  Google Scholar 

  34. Y.N. Petrov, G.I. Prokopenko, B.N. Mordyuk, M.A. Vasylyev, S.M. Voloshko, V.S. Skorodzievski, and V.S. Filatova, Influence of Microstructural Modifications Induced by Ultrasonic Impact Treatment on Hardening and Corrosion Behavior of Wrought Co-Cr-Mo Biomedical Alloy, Mater. Sci. Eng., C, 2016, 58, p 1024–1035

    Article  Google Scholar 

  35. B.N. Mordyuk, O.P. Karasevska, N.I. Khripta, G.I. Prokopenko, and M.A. Vasylyev, Structural Dependence of Corrosion Properties of Zr-1%Nb Alloy in Saline Solution, Metallofiz. Noveishie Tekhnol., 2014, 36(7), p 917–933. doi:10.15407/mfint.36.07.0917 ((in Russian))

    Article  Google Scholar 

  36. B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, and M.O. Iefimov, Effect of Structure Evolution Induced by Ultrasonic Peening on the corrosion Behavior of AISI, 321 Stainless Steel, Mater. Sci. Eng., A, 2007, 458(1–2), p 253–261

    Article  Google Scholar 

  37. H. Hu, Texture of Metals, Texture, 1974, 1(4), p 233–258

    Article  Google Scholar 

  38. O.I. Zaporozhets, B.N. Mordyuk, N.A. Dordienko, V.A. Mykhailovsky, V.F. Mazanko, and O.P. Karasevska, Ultrasonic Studies of Texture in homogeneities in Pressure Vessel Steel Subjected to Ultrasonic Impact Treatment and Shock Compression, Surf. Coat. Technol., 2016, 307, p 693–701

    Article  Google Scholar 

  39. Z. Pu, S. Yang, G.-L. Song, O.W. Dillon, Jr., D.A. Puleo, and I.S. Jawahir, Ultrafine-Grained Surface Layer on Mg–Al–Zn Alloy Produced by Cryogenic Burnishing for Enhanced Corrosion Resistance, Scrip. Mater., 2011, 65(6), p 520–523

    Article  Google Scholar 

  40. M. Hoseini, A. Shahryari, S. Omanovic, and J.A. Szpunar, Comparative Effect of Grain Size and Texture on the Corrosion Behaviour of Commercially Pure Titanium Processed by Equal Channel Angular Pressing, Corrosion Sci., 2009, 51(12), p 3064–3067

    Article  Google Scholar 

  41. S. Azimzadeh and H.J. Rack, Phase Transformations in Ti-6.8Mo-4.5Fe-1.5Al, Metall. Mater. Trans. A, 1998, 29(10), p 2455–2467

    Article  Google Scholar 

  42. F. Prima, P. Vermaut, G. Texier, D. Ansel, and T. Gloriant, Evidence of α-Nanophase Heterogeneous Nucleation from ω Particles in a β-metastable Ti-based Alloy by High-Resolution Electron, Scrip. Mater., 2006, 54(4), p 645–648

    Article  Google Scholar 

  43. S. Nag, R. Banerjee, and H.L. Fraser, Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys, Mater. Sci. Eng., C, 2005, 25(3), p 357–362

    Article  Google Scholar 

  44. P.Yu. Volosevich, G.I. Prokopenko, and B.N. Mordyuk, Evolution of Dislocation Structure at Impact Pulse Loads with Different Frequencies, Metallofiz. Noveishie Tekhnol., 2000, 22, p 61–71 ((in Russian))

    Google Scholar 

  45. A.V. Dobromyslov, N.I. Taluts, K.M. Demchuk, and A.N. Martemianov, Occurrence of β-ω Transformation in Zr-2.5%Nb Alloy at High Pressure, Phys. Met. Metallogr., 1986, 62, p 541–546 ((in Russian))

    Google Scholar 

  46. S. Neogy, K.V.M. Krishna, D. Srivastava, and G.K. Dey, A Study of Morphological and Compositional Evolution of Nanoprecipitates in the Zr-Nb System and Their Transformational Behavior, Philos. Mag. A, 2011, 91(35), p 4447–4464

    Article  Google Scholar 

  47. Z. Zhou, M. Lai, B. Tang, H. Kou, H. Chang, Z. Zhu, J. Li, and L. Zhou, Non-Isothermal Phase Transformation Kinetics of ω Phase in TB-13 Titanium Alloys, Mater. Sci. Eng., A, 2010, 527(20), p 5100–5104

    Article  Google Scholar 

  48. C.A. Rodopoulos, ATh Kermanidis, and ESh Statnikov, The Effect of Surface Engineering Treatments on the Fatigue Behavior of 2024-T351 Aluminum Alloy, J. Mater. Eng. Perform., 2007, 16, p 30

    Article  Google Scholar 

  49. X. An, C.A. Rodopoulos, E.S. Statnikov, V.N. Vitazev, and O.V. Korolkov, Study of the Surface Nanocrystallization Induced by the Esonix Ultrasonic Impact Treatment on the Near-surface of 2024-T351 Aluminum Alloy, J. Mater. Eng. Perform., 2006, 15, p 355

    Article  Google Scholar 

  50. A. Atrens, Dependence of the Pinning Point Dislocation Interaction Energy on the Dislocation Structure in Zirconium Oxygen Alloys, Scrip. Mater., 1974, 8(4), p 401–412

    Article  Google Scholar 

  51. N.I. Khripta, Regularities of Formation of Structure-Phase States and Functional Properties of Zirconium Alloys in Conditions of Ultrasonic Impact Treatment, Uspehi Fiziki Metallov, 2016, 17(2), p 119–152. doi:10.15407/ufm.17.02.119

    Article  Google Scholar 

  52. U. Trdan and J. Grum, Evaluation of Corrosion Resistance of AA6082-T651 Aluminium Alloy After Laser Shock Peening by Means of Cyclic Polarisation and EIS Methods, Corrosion Sci., 2012, 59, p 324–333

    Article  Google Scholar 

  53. B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, and M.O. Iefimov, Effect of Structure Evolution Induced by Ultrasonic Peening on the Corrosion Behavior of AISI, 321 Stainless Steel, Mater. Sci. Eng., A, 2007, 458(1–2), p 253–261

    Article  Google Scholar 

  54. S.P. Chenakin, V.S. Filatova, I.N. Makeeva, and M.A. Vasylyev, Ultrasonic Impact Treatment of CoCrMo Alloy: Surface Composition and Properties, Appl. Surf. Sci., 2017, 408, p 11–20

    Article  Google Scholar 

  55. M.A. Vasylyev, B.N. Mordyuk, S.I. Sidorenko, S.M. Voloshko, and A.P. Burmak, Corrosion of 2024 Alloy After Ultrasonic Impact Cladding with Iron, Surf. Eng., 2017, doi:10.1080/02670844.2017.1334377

    Google Scholar 

  56. Y.P. Lin and O.T. Woo, Oxidation of β-Zr and Related Phases in Zr-Nb Alloys: an Electron Microscopy Investigation, J. Nucl. Mater., 2000, 277(1), p 11–27

    Article  Google Scholar 

  57. G. Hunter, S.C. Jani, and V. Pawar, Method of Surface Oxidizing Zirconium and Zirconium Alloys and Resulting Product, US Patent, 2011, 7,896,926

  58. M.A. Vasylyev, B.M. Mordyuk, S.I. Sidorenko, S.M. Voloshko, and A.P. Burmak, Mass Transfer During Ultrasonic Shock Treatment of Al-Fe, Metallofiz, Metallofiz. Noveishie Tekhnol., 2015, 37(12), p 1603–1618. doi:10.15407/mfint.37.12.1603 (in Ukrainian)

    Article  Google Scholar 

Download references

Acknowledgment

This study is supported by National Academy of Sciences of Ukraine (Project 0114U001127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Mordyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khripta, N.I., Karasevska, O.P. & Mordyuk, B.N. Surface Layers of Zr-18%Nb Alloy Modified by Ultrasonic Impact Treatment: Microstructure, Hardness and Corrosion. J. of Materi Eng and Perform 26, 5446–5455 (2017). https://doi.org/10.1007/s11665-017-2983-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2983-1

Keywords

Navigation