Skip to main content

Corrosion Protection of Phenolic-Epoxy/Tetraglycidyl Metaxylediamine Composite Coatings in a Temperature-Controlled Borax Environment

Abstract

The failure behavior for two kinds of phenolic-epoxy/tetraglycidyl metaxylediamine composite coatings in 60 °C borax aqueous solution was evaluated using electrochemical methods (EIS) combined with scanning electron microscopy, confocal laser scanning microscope, water immersion test, and Raman spectrum. The main focus was on the effect of curing agent on the corrosion protection of coatings. Results revealed that the coating cured by phenolic modified aromatic amine possessed more compact cross-linked structure, better wet adhesion, lower water absorption (0.064 mg h−1 cm−2) and its impedance values was closed to 108 Ω cm2 after immersion for 576 h, while the coating cured by modified aromatic ring aliphatic amine was lower than 105 Ω cm2. The corrosion mechanism of the two coatings is discussed.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    C.L. Zhou, X. Lu, Z. Xin, and J. Liu, Corrosion Resistance of Novel Silane-Functional Polybenzoxazine Coating on Steel, Corros. Sci., 2013, 70, p 145–151

    Article  Google Scholar 

  2. 2.

    M.L. Jiao, K. Yang, J. Cao, Q. Diao, W.X. Zhang, and M.H. Yu, Influence of Epichlorohydrin Content on Structure and Properties of High-ortho Phenolic Epoxy Fibers, J. Appl. Polym. Sci., 2016, 133, p 43375–43381

    Article  Google Scholar 

  3. 3.

    C.M. Satheesh, M.R. Temina, and K. Sunitha, Allyl Ether of Aralkyl Phenolic Resin with Low Melt Viscosity and Its Alder-ene Blends with Bismaleimide: Synthesis, Curing, and Laminate Properties, Polym. Adv. Technol., 2014, 25, p 881–890

    Article  Google Scholar 

  4. 4.

    S. Rimdusit, P. Jongvisuttisun, C. Jubsilp, and W. Tanthapanichakoon, Highly Processable Ternary Systems Based on Benzoxazine, Epoxy, and Phenolic Resins for Carbon Fiber Composite Processing, J. Appl. Polym. Sci., 2009, 111, p 1225–1234

    Article  Google Scholar 

  5. 5.

    J. Cech and B. Kretow, The Effectiveness of Toughening Technologies on Multifunctional Epoxy Resin Systems, Surf. Coat. Aust., 2003, 40, p 19–23

    Google Scholar 

  6. 6.

    P.J. Xu and F.P. Yang, Modification of Phenolic Resin Composites by Hyperbranched Polyborate and Polybenzoxazine, Polym. Compos., 2012, 33, p 1960–1968

    Article  Google Scholar 

  7. 7.

    M.W. Wang, H.Y. Wu, and M.S. Lin, Synthesis, Curing Behavior and Properties of Siloxane and Imide-Containing Tetrafunctional Epoxy, J. Polym. Res., 2008, 15, p 1–9

    Article  Google Scholar 

  8. 8.

    I. Santana, A. Pepe, W. Schreiner, S. Pellice, and S. Cere, Hybrid Sol–Gel Coatings Containing Clay Nanoparticles for Corrosion Protection of Mild Steel, Electrochim. Acta, 2016, 203, p 396–403

    Article  Google Scholar 

  9. 9.

    M.D. Destreri, J. Vogelsang, L. Fedrizzi, and F. Deflorian, Water Up-Take Evaluation of New Waterborne and High Solid Epoxy Coatings. Part II: Electrochemical Impedance Spectroscopy, Prog. Org. Coat., 1999, 37, p 69–81

    Article  Google Scholar 

  10. 10.

    G.K. van der Wel and O.C.G. Adan, Moisture in Organic Coatings—A Review, Prog. Org. Coat., 1999, 37, p 1–14

    Article  Google Scholar 

  11. 11.

    J. Hu, J. Zhang, D. Xie, and C.N. Cao, Water Transport in Organic Coatings (II) a Complicated Actual Trend, J. Chin. Soc. Corros. Prot., 2002, 22, p 371–374

    Google Scholar 

  12. 12.

    Y. Liu, J.G. Wang, L. Liu, Y. Li, and F.H. Wang, Study of the Failure Mechanism of an Epoxy Coating System Under High Hydrostatic Pressure, Corros. Sci., 2013, 74, p 59–70

    Article  Google Scholar 

  13. 13.

    D.Y. Gao, R.B. Heimann, J. Lerchner, J. Seidel, and G. Wolf, Development of a Novel Moisture Sensor Based on Superabsorbent Poly(acrylamide)-montmorillonite Composite Hydrogels, J. Mater. Sci., 2001, 36, p 4567–4571

    Article  Google Scholar 

  14. 14.

    A. Abdal-Hay, M. Dewidar, and J.K. Lim, Biocorrosion Behavior and Cell Viability of Adhesive Polymer Coated Magnesium Based Alloys for Medical Implants, Appl. Surf. Sci., 2012, 261, p 536–546

    Article  Google Scholar 

  15. 15.

    E. Budke, J. Krempel-Hesse, H. Maidhof, and H. Schussler, Decorative Hard Coatings with Improved Corrosion Resistance, Surf. Coat. Technol., 1999, 112, p 108–113

    Article  Google Scholar 

  16. 16.

    W. Funke, Problems and Progress in Organic Coatings Science and Technology, Prog. Org. Coat., 1997, 31, p 5–9

    Article  Google Scholar 

  17. 17.

    M.B. Valcarce and M. Vazquez, Carbon Steel Passivity Examined in Alkaline Solutions: The Effect of Chloride and Nitrite Ions, Electrochim. Acta, 2008, 53, p 5007–5015

    Article  Google Scholar 

  18. 18.

    M. Skrifvars, P. Niemela, R. Koskinen, and O. Hormi, Process Cure Monitoring of Unsaturated Polyester Resins, Vinyl Ester Resins, and Gel Coats by Raman Spectroscopy, J. Appl. Polym. Sci., 2004, 93, p 1285–1292

    Article  Google Scholar 

  19. 19.

    M.A. Gauthier, I. Stangel, T.H. Ellis, and X.X. Zhu, A New Method for Quantifying the Intensity of the C=C Band of Dimethacrylate Dental Monomers in Their FTIR and Raman Spectra, Biomaterials, 2005, 26, p 6440–6448

    Article  Google Scholar 

  20. 20.

    E. Jerusha, S.S. Kirupavathy, and R. Gopalakrishnan, Spectral, Optical and Dielectric Analyses on l-lysine P-nitrophenolate Rnonohydrate Organic Crystals, Optik, 2016, 127, p 420–427

    Article  Google Scholar 

  21. 21.

    F.T. Cao, J. Wei, J.H. Dong, and W. Ke, The Corrosion Inhibition Effect of Phytic Acid on 20SiMn Steel in Simulated Carbonated Concrete Pore Solution, Corros. Sci., 2015, 100, p 365–376

    Article  Google Scholar 

  22. 22.

    M.C. Yan, C.A. Vetter, and V.J. Gelling, Corrosion Inhibition Performance of Polypyrrole Al Flake Composite Coatings for Al Alloys, Corros. Sci., 2013, 70, p 37–45

    Article  Google Scholar 

  23. 23.

    H.W. Shi, F.C. Liu, L.H. Yang, and E.H. Han, Characterization of Protective Performance of Epoxy Reinforced with Nanometer-Sized TiO2 and SiO2, Prog. Org. Coat., 2008, 62, p 359–368

    Article  Google Scholar 

  24. 24.

    R. Hirayama and S. Haruyama, Electrochemical Impedance for Degraded Coated Steel Having Pores, Corrosion, 1991, 47, p 952–958

    Article  Google Scholar 

  25. 25.

    I. Milosev, Z. Jovanovic, J.B. Bajat, R. Jancic-Heinemann, and V.B. Miskovic-Stankovic, Surface Analysis and Electrochemical Behavior of Aluminum Pretreated by Vinyltriethoxysilane Films in Mild NaCl Solution, J. Electrochem. Soc., 2012, 159, p C303–C311

    Article  Google Scholar 

  26. 26.

    M.F. Montemor, A.M. Cabral, M.L. Zheludkevich, and M.G.S. Ferreira, The Corrosion Resistance of Hot Dip Galvanized Steel Pretreated with Bis-functional Silanes Modified with Microsilica, Surf. Coat. Technol., 2006, 200, p 2875–2885

    Article  Google Scholar 

  27. 27.

    C. Liu, Q. Bi, A. Leyland, and A. Matthews, An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II. EIS Interpretation of Corrosion Behaviour, Corros. Sci., 2003, 45, p 1257–1273

    Article  Google Scholar 

  28. 28.

    F. Mansfeld, Use of Electrochemical Impedance Spectroscopy for the Study of Corrosion Protection by Polymer Coatings, J. Appl. Electrochem., 1995, 25, p 187–202

    Google Scholar 

  29. 29.

    X.W. Liu, J.P. Xiong, Y.W. Lv, and Y. Zuo, Study on Corrosion Electrochemical Behavior of Several Different Coating Systems by EIS, Prog. Org. Coat., 2009, 64, p 497–503

    Article  Google Scholar 

  30. 30.

    M.C. Yan, J. Xu, L.B. Yu, T.Q. Wu, C. Sun, and W. Ke, EIS Analysis on Stress Corrosion Initiation of Pipeline Steel Under Disbonded Coating in Near-Neutral pH Simulated Soil Electrolyte, Corros. Sci., 2016, 110, p 23–34

    Article  Google Scholar 

  31. 31.

    L. Kouisni, M. Azzi, F. Dalard, and S. Maximovitch, Phosphate Coatings on Magnesium Alloy AM60 Part 2: Electrochemical Behaviour in Borate Buffer Solution, Surf. Coat. Technol., 2005, 192, p 239–246

    Google Scholar 

  32. 32.

    J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, and L.O.S. Bulhoes, Impedance of Constant Phase Element (CPE)-Blocked Diffusion in Film Electrodes, J. Electroanal. Chem., 1998, 452, p 229–234

    Article  Google Scholar 

  33. 33.

    B. Rosborg, T. Kosec, A. Kranjc, J.S. Pan, and A. Legat, Electrochemical Impedance Spectroscopy of Pure Copper Exposed in Bentonite under Oxic Conditions, Electrochim. Acta, 2011, 56, p 7862–7870

    Article  Google Scholar 

  34. 34.

    R.N. Deo, N. Birbilis, and J.P. Cull, Measurement of Corrosion in Soil Using the Galvanostatic Pulse Technique, Corros. Sci., 2014, 80, p 339–349

    Article  Google Scholar 

  35. 35.

    M. Mouanga, M. Puiggali, and O. Devos, EIS and LEIS Investigation of Aging Low Carbon Steel with Zn-Ni Coating, Electrochim. Acta, 2013, 106, p 82–90

    Article  Google Scholar 

  36. 36.

    A. Singh, I. Ahamad, V.K. Singh, and M.A. Quraishi, Inhibition Effect of Environmentally Benign Karanj (Pongamia pinnata) Seed Extract on Corrosion of Mild Steel in Hydrochloric Acid Solution, J. Solid State Electrochem., 2011, 15, p 1087–1097

    Article  Google Scholar 

  37. 37.

    B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Determination of Effective Capacitance and Film Thickness from Constant-Phase-Element Parameters, Electrochim. Acta, 2010, 55, p 6218–6227

    Article  Google Scholar 

  38. 38.

    D.Y. Yu, J.T. Tian, J.H. Dai, and X. Wang, Corrosion Resistance of Three-Layer Superhydrophobic Composite Coating on Carbon Steel in Seawater, Electrochim. Acta, 2013, 97, p 409–419

    Article  Google Scholar 

  39. 39.

    X.M. Su, Q. Zhou, Q.Y. Zhang, Y. Zhang, and H. Zhang, Study on the Deterioration Process of Bipolar Coating Using Electrochemical Impedance Spectroscopy, Appl. Surf. Sci., 2011, 257, p 6095–6101

    Article  Google Scholar 

  40. 40.

    F. Mansfeld and C.H. Tsai, Determination of Coating Deterioration With EIS. 1. Basic Relationships, Corrosion, 1991, 47, p 958–963

    Article  Google Scholar 

  41. 41.

    F. Mansfeld, Evaluation of Corrosive Degradation in Coated Steel Using Alternating Current Impedance Spectroscopy—Discussion, Corrosion, 1996, 52, p 417–418

    Article  Google Scholar 

  42. 42.

    H. Yun, J. Li, H.B. Chen, and C.J. Lin, A Study on the N-, S- and Cl-Modified Nano-TiO2 Coatings for Corrosion Protection of Stainless Steel, Electrochim. Acta, 2007, 52, p 6679–6685

    Article  Google Scholar 

  43. 43.

    J.G. Liu, G.P. Gong, and C.W. Yan, EIS Study of Corrosion Behaviour of Organic Coating/Dacromet Composite Systems, Electrochim. Acta, 2005, 50, p 3320–3332

    Article  Google Scholar 

  44. 44.

    F. Mansfeld, Models for the Impedance Behavior of Protective Coatings and Cases of Localized Corrosion, Electrochim. Acta, 1993, 38, p 1891–1897

    Article  Google Scholar 

  45. 45.

    W. Li, H. Tian, and B. Hou, Corrosion Performance of Epoxy Coatings Modified by Nanoparticulate SiO2, Mater. Corros., 2012, 63, p 44–53

    Article  Google Scholar 

  46. 46.

    H.H. Hassan, E. Abdelghani, and M.A. Amin, Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by Triazole Derivatives—Part I. Polarization and EIS Studies, Electrochim. Acta, 2007, 52, p 6359–6366

    Article  Google Scholar 

  47. 47.

    N. Tang, W.J. vanOoij, and G. Gorecki, Comparative EIS Study of Pretreatment Performance in Coated Metals, Prog. Org. Coat., 1997, 30, p 255–263

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Technology of Corrosion Control on Wind Power Equipment Academician Workstation Project (Grant Numbers 2013B090400023) and Henan science and technology achievement transformation project of Chinese Academy of Sciences. The authors are grateful to Ms. X. Xin for her support to the Raman spectrum analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Wang, Z., Han, EH. et al. Corrosion Protection of Phenolic-Epoxy/Tetraglycidyl Metaxylediamine Composite Coatings in a Temperature-Controlled Borax Environment. J. of Materi Eng and Perform 26, 5781–5794 (2017). https://doi.org/10.1007/s11665-017-2980-4

Download citation

Keywords

  • alkaline corrosion
  • corrosion protection
  • EIS
  • organic coatings
  • phenolic modified aromatic amine