Skip to main content

Advertisement

Log in

Parameter Calibration of GTN Damage Model and Formability Analysis of 22MnB5 in Hot Forming Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot forming of high strength steel at elevated temperatures is an attractive technology to achieve the lightweight of vehicle body. The mechanical behavior of boron steel 22MnB5 strongly depends on the variation of temperature which makes the process design more difficult. In this paper, the Gurson–Tvergaard–Needleman (GTN) model is used to study the formability of 22MnB5 sheet at different temperatures. Firstly, the rheological behavior of 22MnB5 is analyzed through a series of hot tensile tests at a temperature range of 600-800 °C. Then, a detailed process to calibrate the damage parameters is given based on the response surface methodology and genetic algorithm method. The GTN model together with the damage parameters calibrated is then implemented to simulate the deformation and damage evolution of 22MnB5 in the process of high-temperature Nakazima test. The capability of the GTN model as a suitable tool to evaluate the sheet formability is confirmed by comparing experimental and calculated results. Finally, as a practical application, the forming limit diagram of 22MnB5 at 700 °C is constructed using the Nakazima simulation and Marciniak–Kuczynski (M–K) model, respectively. And the simulation integrated GTN model shows a higher reliability by comparing the predicted results of these two approaches with the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches, Asm Trans. Q., 1963, 56(1), p 25–48

    Google Scholar 

  2. G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop, Sae Technical Paper, 680093, 1968

  3. K. Nakazima, T. Kikuma, and K. Hasuka, Study on the Formability of Steel Sheets, Yawata Tech. Rep., 1968, 264, p 8517–8530

    Google Scholar 

  4. S. Panich, F. Barlat, V. Uthaisangsuk, S. Suranuntchai, and S. Jirathearanat, Experimental and Theoretical Formability Analysis Using Strain and Stress Based Forming Limit Diagram for Advanced High Strength Steels, Mater. Des., 2013, 51, p 756–766

    Article  Google Scholar 

  5. G. Ambrogio, C. Bruni, S. Bruschi, L. Filice, A. Ghiotti, and M. Simoncini, Characterisation of AZ31B Magnesium Alloy Formability in Warm Forming Conditions, Int. J. Mater. Form., 2008, 1(1), p 205–208

    Article  Google Scholar 

  6. C.L. Chow, M. Jie, and S.J. Hu, Forming Limit Analysis of Sheet Metals Based on a Generalized Deformation Theory, J. Eng. Mater. Technol., 2003, 125(3), p 260–265

    Article  Google Scholar 

  7. C.S. Zhang, L. Leotoing, D. Guines, and E. Ragneau, Theoretical and Numerical Study of Strain Rate Influence on AA5083 Formability, J. Mater. Process. Technol., 2009, 209(8), p 3849–3858

    Article  Google Scholar 

  8. S. Ahmadi, A.R. Eivani, and A. Akbarzadeh, An Experimental and Theoretical Study on the Prediction of Forming Limit Diagrams Using New BBC Yield Criteria and M–K Analysis, Comput. Mater. Sci., 2009, 44(4), p 1272–1280

    Article  Google Scholar 

  9. R. Sowerby and J.L. Duncan, Failure in Sheet Metal in Biaxial Tension, Int. J. Mech. Sci., 1971, 13(3), p 217–229

    Article  Google Scholar 

  10. J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. Technol., 1985, 107(1), p 83–89

    Article  Google Scholar 

  11. M.S. Mohamed, A.D. Foster, J.G. Lin, D.S. Balint, and T.A. Dean, Investigation of Deformation and Failure Features in Hot Stamping of AA6082: Experimentation and Modelling, Int. J. Mach. Tools Manuf., 2012, 53(1), p 27–38

    Article  Google Scholar 

  12. J.G. Lin, M. Mohamed, D. Balint, and T. Dean, The Development of Continuum Damage Mechanics-Based Theories for Predicting Forming Limit Diagrams for Hot Stamping Applications, Int. J. Damage Mech., 2014, 23(5), p 684–701

    Article  Google Scholar 

  13. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99(1), p 2–15

    Article  Google Scholar 

  14. A. Needleman and V. Tvergaard, An Analysis of Ductile Rupture in Notched Bars, J. Mech. Phys. Solids, 1984, 32(6), p 461–490

    Article  Google Scholar 

  15. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32(1), p 157–169

    Article  Google Scholar 

  16. A. Kami, B.M. Dariani, A.S. Vanini, D.S. Comsa, and D. Banabic, Numerical Determination of the Forming Limit Curves of Anisotropic Sheet Metals Using GTN Damage Model, J. Mater. Process. Technol., 2015, 216, p 472–483

    Article  Google Scholar 

  17. M. Abbasi, M.A. Shafaat, M. Ketabchi, D.F. Haghshenas, and M. Abbasi, Application of the GTN Model to Predict the Forming Limit Diagram of IF-Steel, J. Mech. Sci. Technol., 2012, 26(2), p 345–352

    Article  Google Scholar 

  18. D.Z. Sun, D. Siegele, B. Voss, and W. Schmitt, Application of Local Damage Models to the Numerical Analysis of Ductile Rupture, Fatigue Fract. Eng. Mater. Struct., 1989, 12(3), p 201–212

    Article  Google Scholar 

  19. D. Steglich, T. Siegmund, and W. Brocks, Micromechanical Modeling of Damage Due to Particle Cracking in Reinforced Metals, Comput. Mater. Sci., 1999, 16(1), p 404–413

    Article  Google Scholar 

  20. F. Abbassi, T. Belhadj, S. Mistou, and A. Zghal, Parameter Identification of a Mechanical Ductile Damage Using Artificial Neural Networks in Sheet Metal Forming, Mater. Des., 2013, 45, p 605–615

    Article  Google Scholar 

  21. J.J. Cui, G.Y. Sun, J.R. Xu, X.D. Huang, and G.Y. Li, A Method to Evaluate the Formability of High-Strength Steel in Hot Stamping, Mater. Des., 2015, 77, p 95–109

    Article  Google Scholar 

  22. H.Z. Li, X. Wu, and G.Y. Li, Prediction of Forming Limit Diagrams for 22MnB5 in Hot Stamping Process, J. Mater. Eng. Perform., 2013, 22(8), p 2131–2140

    Google Scholar 

  23. B.T. Tang, S. Bruschi, A. Ghiotti, and P.F. Bariani, An Improved Damage Evolution Model to Predict Fracture of Steel Sheet at Elevated Temperature, J. Mater. Process. Technol., 2016, 228, p 76–87

    Article  Google Scholar 

  24. Z. Marciniak and K. Kuczyński, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9(9), p 609–620

    Article  Google Scholar 

  25. V. Tvergaard, Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions, Int. J. Fract., 1981, 17(4), p 389–407

    Article  Google Scholar 

  26. C.C. Chu and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, J. Eng. Mater. Technol., 1980, 102(3), p 249–256

    Article  Google Scholar 

  27. N. Benseddiq and A. Imad, A Ductile Fracture Analysis Using a Local Damage Model, Int. J. Pres Vessels Pip., 2008, 85(4), p 219–227

    Article  Google Scholar 

  28. R. Kiran and K. Khandelwal, Gurson Model Parameters for Ductile Fracture Simulation in ASTM A992 Steels, Fatigue Fract. Eng. Mater. Struct., 2014, 37(2), p 171–183

    Article  Google Scholar 

  29. M. Merklein, J. Lecher, V. Gödel, S. Bruschi, A. Ghiotti, and A. Turetta, Mechanical Properties and Plastic Anisotropy of the Quenchenable High Strength Steel 22MnB5 at Elevated Temperatures, Key Eng. Mater., 2007, 344, p 79–86

    Article  Google Scholar 

  30. I.I. Cuesta, J.M. Alegre, and R. Lacalle, Determination of the Gurson–Tvergaard Damage Model Parameters for Simulating Small Punch Tests, Fatigue Fract. Eng. Mater. Struct., 2010, 33(11), p 703–713

    Google Scholar 

  31. Y.X. Yan, Q. Sun, J.J. Chen, and H.L. Pan, The Initiation and Propagation of Edge Cracks of Silicon Steel During Tandem Cold Rolling Process Based on the Gurson–Tvergaard–Needleman Damage Model, J. Mater. Process. Technol., 2013, 213(4), p 598–605

    Article  Google Scholar 

  32. R. George, A. Bardelcik, and M.J. Worswick, Hot Forming of Boron Steels Using Heated and Cooled Tooling for Tailored Properties, J. Mater. Process. Technol., 2012, 212(11), p 2386–2399

    Article  Google Scholar 

  33. F.F. Li, M.W. Fu, J.P. Lin, and X.N. Wang, Experimental and Theoretical Study on the Hot Forming Limit of 22MnB5 Steel, Int. J. Adv. Manuf. Technol., 2014, 71(1–4), p 297–306

    Article  Google Scholar 

  34. R.D. Haeyer and A. Bragard, Determination of the Limiting Strains at the Onset of Necking, CRM Metall. Rep., 1975, 42, p 33–35

    Google Scholar 

Download references

Acknowledgments

This research is financially supported by National Natural Science Foundation of China (51705065) and Fundamental Research Funds for the Central University (DUT16RC(4)28, DUT17JC38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenquan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, L., Liu, W., Wang, D. et al. Parameter Calibration of GTN Damage Model and Formability Analysis of 22MnB5 in Hot Forming Process. J. of Materi Eng and Perform 26, 5155–5165 (2017). https://doi.org/10.1007/s11665-017-2962-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2962-6

Keywords

Navigation