Skip to main content

Spark Plasma Sintering and Upsetting of a Gas-Atomized/Air-Atomized Al Alloy Powder Mixture

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Al-Zn-Mg-Cu alloy powder, Alumix 431D, was modified by replacing the native air-atomized pure Al particles with gas-atomized pure Al. Samples were sintered using spark plasma sintering (SPS), and upset forging was applied to the sintered samples by SPS. Densities over 98 and 99% of theoretical were obtained for the sintered and forged samples, respectively. Microstructural analysis and characterization of all samples were done using energy-dispersive spectroscopy and x-ray diffraction. Mechanical properties were evaluated using microhardness and flexural strength and strain measurements. The microhardness value of the T6 tempered sample was comparable to that of its wrought counterpart AA7075. Particle bonding after sintering was incomplete and reveals that composite oxide layer of Al-Zn-Mg-Cu alloy powder is difficult to disrupt, and it is necessary to apply a secondary process like forging to improve particle bonding. The loss in ductility following T6 tempering is ascribed to void formation due to the dissolution of the secondary phases, remaining undissolved precipitates, and a localized lack of cohesion between particles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    M. Omori, Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS), Mater. Sci. Eng. A, 2000, 287, p 183–188

    Article  Google Scholar 

  2. 2.

    Z.A. Munir, Analytical Treatment of the Role of Surface Oxide Layers in the Sintering of Metals, J. Mater. Sci., 1979, 14, p 2733–2740

    Article  Google Scholar 

  3. 3.

    S. Rudinsky, P. Hendrickx, D.P. Bishop, and M. Brochu, Spark Plasma Sintering and Age Hardening of an Al-Zn-Mg Alloy Powder Blend, Mater. Sci. Eng. A, 2016, 650, p 129–138

    Article  Google Scholar 

  4. 4.

    M.S. Mohammadi, A. Simchi, and C. Gierl, Phase Formation and Microstructural Evolution During Sintering of Al-Zn-Mg-Cu Alloys, Powder Metall., 2010, 53, p 62–70

    Article  Google Scholar 

  5. 5.

    T.C. Joshi, U. Prakash, and V.V. Dabhade, Microstructural Development During Hot Forging of Al 7075 Powder, J. Alloys Compd., 2015, 639, p 123–130

    Article  Google Scholar 

  6. 6.

    K. Lange, Handbook of Metal Forming, McGraw-Hill, New York, 1985

    Google Scholar 

  7. 7.

    ASM Handbook, Volume 07-Powder Metal Technologies and Applications. (ASM International, 1998)

  8. 8.

    M.M. Tünçay, L. Nguyen, P. Hendrickx, and M. Brochu, Evaluation of the Particle Bonding for Aluminum Sample Produced by Spark Plasma Sintering, J. Mater. Eng. Perform., 2016, 25, p 4521–4528

    Article  Google Scholar 

  9. 9.

    P. Hendrickx, M.M. Tünçay, and M. Brochu, Recyclability Assessment of Al 7075 Chips Produced by Cold Comminution and Consolidation Using Spark Plasma Sintering, Can. Metall. Q., 2016, 55, p 94–103

    Article  Google Scholar 

  10. 10.

    ASTM B963-13, Standard Test Methods for Oil Content, Oil-Impregnation Efficiency, and Interconnected Porosity of Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle. (ASTM International, West Conshohocken, PA, 2013)

  11. 11.

    J.M. Martín, T. Gómez-Acebo, and F. Castro, Sintering Behaviour and Mechanical Properties of PM Al-Zn-Mg-Cu Alloy Containing Elemental Mg Additions, Powder Metall., 2002, 45, p 173–180

    Article  Google Scholar 

  12. 12.

    S. Rudinsky, J.M. Aguirre, G. Sweet, J. Milligan, D.P. Bishop, and M. Brochu, Spark Plasma Sintering of an Al-Based Powder Blend, Mater. Sci. Eng. A, 2015, 621, p 18–27

    Article  Google Scholar 

  13. 13.

    O. Molnárová, P. Málek, F. Lukáč, and T. Chráska, Spark Plasma Sintering of a Gas Atomized Al 7075 Alloy: Microstructure and Properties, Materials, 2016, 9, p 1004

    Article  Google Scholar 

  14. 14.

    M.A.J. Taleghani, E.M.R. Navas, and J.M. Torralba, Microstructural and Mechanical Characterisation of 7075 Aluminium Alloy Consolidated from a Premixed Powder by Cold Compaction and Hot Extrusion, Mater. Des., 2014, 55, p 674–682

    Article  Google Scholar 

  15. 15.

    H. Becker, M. Dopita, J. Stráská, P. Málek, M. Vilémová, and D. Rafaja, Microstructure and Properties of Spark Plasma Sintered Al-Zn-Mg-Cu Alloy, Acta Phys Pol A, 2015, 128, p 602–605

    Article  Google Scholar 

  16. 16.

    A.D.P. LaDelpha, H. Neubing, and D.P. Bishop, Metallurgical Assessment of an Emerging Al-Zn-Mg-Cu P/M Alloy, Mater. Sci. Eng. A, 2009, 520, p 105–113

    Article  Google Scholar 

  17. 17.

    Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F.Y. Xie, Diffusion Coefficients of Some Solutes in fcc and Liquid Al: Critical Evaluation and Correlation, Mater. Sci. Eng. A, 2003, 363, p 140–151

    Article  Google Scholar 

  18. 18.

    T. Pieczonka, J. Kazior, A. Szewczyk-Nykiel, M. Hebda, and M. Nykiel, Effect of Atmosphere on Sintering of Alumix 431D Powder, Powder Metall., 2012, 55, p 354–360

    Article  Google Scholar 

  19. 19.

    L.F. Mondolfo, 4-Aluminum-Zinc Alloys, Aluminum Alloys, Butterworth-Heinemann, Oxford, 1976, p 842–882

    Google Scholar 

  20. 20.

    X. Fan, D. Jiang, Q. Meng, and L. Zhong, The microstructural evolution of an Al-Zn-Mg-Cu Alloy During Homogenization, Mater. Lett., 2006, 60, p 1475–1479

    Article  Google Scholar 

  21. 21.

    R.E. Smallman and A.H.W. Ngan, Physical Metallurgy and Advanced Materials, 7th ed., Elsevier, Amsterdam, 2007

    Google Scholar 

  22. 22.

    Y. Lang, Y. Cai, H. Cui, and J. Zhang, Effect of Strain-Induced Precipitation on the Low Angle Grain Boundary in AA7050 Aluminum Alloy, Mater. Des., 2011, 32, p 4241–4246

    Article  Google Scholar 

  23. 23.

    A. Deschamps, G. Fribourg, Y. Bréchet, J.L. Chemin, and C.R. Hutchinson, In Situ Evaluation of Dynamic Precipitation During Plastic Straining of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2012, 60, p 1905–1916

    Article  Google Scholar 

  24. 24.

    W.T. Huo, J.T. Shi, L.G. Hou, and J.S. Zhang, An Improved Thermo-Mechanical Treatment of High-Strength Al-Zn-Mg-Cu Alloy for Effective Grain Refinement and Ductility Modification, J. Mater. Process. Technol., 2017, 239, p 303–314

    Article  Google Scholar 

  25. 25.

    H. Rudianto, G.J. Jang, S.S. Yang, Y.J. Kim, and I. Dlouhy, Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder, Adv. Mater. Sci. Eng., 2015, 2015, p 8

    Article  Google Scholar 

  26. 26.

    G. Xie, O. Ohashi, M. Song, K. Mitsuishi, and K. Furuya, Reduction Mechanism of Surface Oxide Films and Characterization of Formations on Pulse Electric-Current Sintered Al-Mg alloy Powders, Appl. Surf. Sci., 2005, 241, p 102–106

    Article  Google Scholar 

  27. 27.

    R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, PWS Pub. Co., Boston, 1994

    Google Scholar 

  28. 28.

    A.S. Chua, M. Brochu, and D.P. Bishop, Spark Plasma Sintering of Prealloyed Aluminium Powders, Powder Metall., 2015, 58, p 51–60

    Article  Google Scholar 

  29. 29.

    M. Zadra, F. Casari, L. Girardini, and A. Molinari, Spark Plasma Sintering of Pure Aluminium Powder: Mechanical Properties and Fracture Analysis, Powder Metall., 2007, 50, p 40–45

    Article  Google Scholar 

  30. 30.

    R.N. Lumley, T.B. Sercombe, and G.M. Schaffer, Surface Oxide and the Role of Magnesium During the Sintering of Aluminum, Metall. Mater. Trans. A, 1999, 30, p 457–463

    Article  Google Scholar 

  31. 31.

    G.R. Wakefield and R.M. Sharp, The Composition of Oxides Formed on Al-Mg Alloys, Appl. Surf. Sci., 1991, 51, p 95–102

    Article  Google Scholar 

  32. 32.

    G. Xie, O. Ohashi, T. Sato, N. Yamaguchi, M. Song, K. Mitsuishi, and K. Furuya, Effect of Mg on the Sintering of Al-Mg Alloy Powders by Pulse Electric-Current Sintering Process, Mater. Trans., 2004, 45, p 904–909

    Article  Google Scholar 

  33. 33.

    A.D. Isadare, B. Aremo, M.O. Adeoye, O.J. Olawale, and M.D. Shittu, Effect of Heat Treatment on Some Mechanical Properties of 7075 Aluminium Alloy, Mater. Res., 2013, 16, p 190–194

    Article  Google Scholar 

  34. 34.

    M. Brochu, B. Gauntt, T. Zimmerly, A. Ayala, and R. Loehman, Fabrication of UHTCs by Conversion of Dynamically Consolidated Zr+ B and Hf+ B Powder Mixtures, J. Am. Ceram. Soc., 2008, 91, p 2815–2822

    Article  Google Scholar 

  35. 35.

    X.-G. Fan, D.-M. Jiang, Q.-C. Meng, B.-Y. Zhang, and T. Wang, Evolution of Eutectic Structures in Al-Zn-Mg-Cu Alloys During Heat Treatment, Trans. Nonferrous Met. Soc. China, 2006, 16, p 577–581

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge AUTO 21 (Grant no. C502-CPM) for their financial support and the Aluminum Research Centre—REGAL. The authors would like to thank The Council of Higher Education of Turkey and Marmara University for scholarships to Mr. Tünçay.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mathieu Brochu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tünçay, M.M., Muñiz-Lerma, J.A., Bishop, D.P. et al. Spark Plasma Sintering and Upsetting of a Gas-Atomized/Air-Atomized Al Alloy Powder Mixture. J. of Materi Eng and Perform 26, 5097–5106 (2017). https://doi.org/10.1007/s11665-017-2948-4

Download citation

Keywords

  • Al alloys
  • forging
  • mechanical properties
  • powder blend
  • spark plasma sintering