Skip to main content
Log in

Local Ratcheting Response in Dissimilar Metal Weld Joint: Characterization Through Digital Image Correlation Technique

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript


Ratcheting fatigue behavior of different alloys and their weld joints has been a topic of interest in the past few decades. However, little information is available about the ratcheting response in different zones, when a composite weld section is subjected to asymmetric loading cycle. This work aims at understanding the local ratcheting response in various zones of a dissimilar metal weld (DMW) joint. Digital image correlation technique has been used to measure local ratcheting strain components of a DMW joint. Accumulation of ratcheting strain in various zones of a DMW joint was found to be different, harder region accumulating negligible and softer region accumulating larger local ratcheting strain. Fatigue crack initiation or neck formation occurred in soft region owing to high ratcheting strain accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others


  1. S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, Key Issues in Cyclic Plastic Deformation: Experimentation, Mech. Mater., 2011, 43(11), p 705–720

    Article  Google Scholar 

  2. C.D. Lundin, Dissimilar Metal Welds Transition Joints Literature Review, Weld. Res. Suppl., 1982, 61, p 58S–63S

    Google Scholar 

  3. H. Hanninen, P. Aaltonen, A. Brederholm, U. Ehrnsten, H. Gripenberg, A. Toivonen, J. Pitkanen, and I. Virkkunen, Dissimilar Metal Weld Joints and Their Performance in Nuclear Power Plant and Oil Refineray Conditions, VTT Res. Notes, 2006, 2347, p 1–208

    Google Scholar 

  4. G. Wang, H. Wang, F. Xuan, and S. Tu, Local Fracture Behaviour and Integrity Assessment of Dissimilar Metal Welded Joint in Nuclear Power Systems. 13th International Conference on Fracture, June 16-21, Beijing, 2013.

  5. J.S. Kim, T.E. Jin, S.G. Li, and H.S. Chung, A Study on Structural Integrity of Dissimilar Welds in Nuclear Piping, Paper # G06/5, Tranasctions SMiRT 19, Toronto, Aug 2007.

  6. S.R. McNeill, W.H. Peters, and M.A. Sutton, Estimation of Stress Intensity Factor by Digital Image Correlation, Eng. Fract. Mech., 1987, 28, p 101–112

    Article  Google Scholar 

  7. M. Mokhtarishirazabad, P. Lopez-Crespo, B. Moreno, A. Lopez-Moreno, and M. Zanganeh, Evaluation of Crack-Tip Fields from DIC Data: A Parametric Study, Int. J. Fatigue, 2016, 89, p 11–16

    Article  Google Scholar 

  8. M.A. Sutton, W. Zhao, S.R. McNeill, J.D. Helm, R.S. Piascik, and W.T. Riddell, Local Crack Closure Measurements: Development of a Measurement System Using Computer Vision and a Far-Field Microscope, R.C. McClung, J.C. Newman, Ed. Adv. Fatigue Crack Clos. Meas. Anal. Second Vol. ASTM STP 1343, West Conshohocken, PA: 1999, p. 145–56.

  9. S. Yoneyama, S. Arikawa, S. Kusayanagi, and K. Hazumi, Evaluating J-Integral from Displacement Fields Measured by Digital Image Correlation, Strain, 2014, 50, p 147–160

    Article  Google Scholar 

  10. T.H. Becker, M. Mostafavi, R.B. Tait, and T.J. Marrow, An Approach to Calculate the Jintegral by Digital Image Correlation Displacement Field Measurement, Fatigue Fract. Eng. Mater. Struct., 2012, 35, p 971–984

    Article  Google Scholar 

  11. J.R. Yates, M. Zanganeh, and Y.H. Tai, Quantifying Crack Tip Displacement Fields with DIC, Eng. Fract. Mech., 2010, 77, p 2063–2076

    Article  Google Scholar 

  12. S. Roux and F. Hild, Stress Intensity Factor Measurements from Digital Image Correlation: Post-processing and Integrated Approaches, Int. J. Fract., 2006, 140, p 141–157

    Article  Google Scholar 

  13. M. Zanganeh, R.A. Tomlinson, and J.R. Yates, T-Stress Determination Using Digital Image Correlation, XIth Congrees Expo. Exp. Appl. Mech., Orlando, Florida USA: 2008

  14. W.P. Leser, N. Carolina, N. Carolina, J.A. Newman, and W.M. Johnston, Fatigue Crack Closure Analysis Using Digital Image Correlation. NASA/TM–2010-216695 2010.

  15. J.M. Vasco-Olmo, F.A. Díaz, A. García-Collado, and R. Dorado-Vicente, Experimental Evaluation of Crack Shielding During Fatigue Crack Growth Using Digital Image Correlation, Fatigue Fract. Eng. Mater. Struct., 2015, 38, p 223–237

    Article  Google Scholar 

  16. J. Carroll, C. Efstathiou, J. Lambros, H. Sehitoglu, B. Hauber, and S. Spottswood, Investigation of Fatigue Crack Closure Using Multiscale Image Correlation Experiments, Eng. Fract. Mech., 2009, 76, p 2384–2398

    Article  Google Scholar 

  17. F.V. Díaz, G.H. Kaufmann, A.F. Armas, and G.E. Galizzi, Optical Measurement of the Plastic Zone Size in a Notched Metal Specimen Subjected to Low-Cycle Fatigue, Opt. Lasers Eng., 2001, 35, p 325–333

    Article  Google Scholar 

  18. R. Hamam, F. Hild, and S. Roux, Stress Intensity Factor Gauging by Digital Image Correlation: Application in Cyclic Fatigue, Strain, 2007, 43, p 181–192

    Article  Google Scholar 

  19. J. Kang, Y. Ososkov, J.D. Embury, and D.S. Wilkinson, Digital Image Correlation Studies for Microscopic Strain Distribution and Damage in Dual Phase Steels, Scr. Mater., 2007, 56, p 999–1002

    Article  Google Scholar 

  20. H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates, Local Plastic Strain Evolution in a High Strength Dual-Phase Steel, Mater. Sci. Eng., A, 2010, 527(18-19), p 5026–5032

    Article  Google Scholar 

  21. J.D. Carroll, W. Abuzaid, J. Lambros, and H. Sehitoglu, High Resolution Digital Image Correlation Measurements of Strain Accumulation in Fatigue Crack Growth, Int. J. Fatigue, 2013, 57, p 140–150

    Article  Google Scholar 


  23. X.M. Chena, Y.C. Lin, and J. Chenc, Low-Cycle Fatigue Behaviors of Hot-Rolled AZ91 Magnesium Alloy Under Asymmetrical Stress-Controlled Cyclic Loadings, J. Alloys Compd., 2013, 579(5), p 540–548

    Article  Google Scholar 

  24. Y.C. Lin, Z.H. Liu, X.M. Chen, and J. Chen, Uniaxial Ratcheting and Fatigue Failure Behaviors of Hot-Rolled AZ31B Magnesium Alloy Under Asymmetrical Cyclic Stress-Controlled Loadings, Mater. Sci. Eng., A, 2013, 573, p 234–244

    Article  Google Scholar 

  25. A. Sarkar, B.K. Kumawat, and J.K. Chakravartty, Ratchetting Behavior of 20MnMoNi55 Reactor Pressure Vessel Steel, J. Nuclear Mater., 2015, 467(2), p 500–504

    Article  Google Scholar 

  26. S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, Ratcheting and Low Cycle Fatigue Behavior of SA333 Steel and Their Life Prediction, J. Nucl. Mater., 2010, 401(1), p 17–24

    Article  Google Scholar 

  27. X. Yuan, W. Yu, S. Fu, D. Yu, and X. Chen, Effect of Mean Stress and Ratcheting Strain on the Low Cycle Fatigue Behavior of a Wrought 316LN Stainless Steel, Mater. Sci. Eng., A, 2016, 677, p 193–202

    Article  Google Scholar 

  28. S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, True Stress-Controlled Ratcheting Behavior of 304LN Stainless Steel, J. Mater. Sci., 2012, 47(11), p 4660–4672

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Surajit Kumar Paul.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.K., Roy, S., Sivaprasad, S. et al. Local Ratcheting Response in Dissimilar Metal Weld Joint: Characterization Through Digital Image Correlation Technique. J. of Materi Eng and Perform 26, 4953–4963 (2017).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: