Skip to main content
Log in

Deformation Twinning in Nb-Microalloyed Fe-Mn-C-Al Twinning-Induced Plasticity Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Work hardening and deformation twinning in microalloyed Fe-Mn-C-Al twinning-induced plasticity (TWIP) steel with Nb were investigated in this study, and it was found that the addition of Nb affected the work-hardening behavior of TWIP steel. Moreover, the quantitative characterization of twinning was performed on the deformed microstructure by electron backscattering diffraction analysis, and the results indicate that the addition of Nb causes a reduction in twinning kinetics. The decrease in deformation twinning in TWIP steel with added Nb can be attributed to the effect of fine grain, dislocations in non-recrystallized grains, and the formation of twins on a particular grain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development-Properties-Application, Int. J. Plast., 2000, 16, p 1391–1409

    Article  Google Scholar 

  2. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168

    Article  Google Scholar 

  3. O. Bouaziz, S. Allain, and C. Scott, Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels, Scripta Mater., 2008, 58, p 484–487

    Article  Google Scholar 

  4. H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, On the Relationship Between the Twin Internal Structure and the Work-Hardening Rate of TWIP Steels, Scripta Mater., 2010, 63, p 961–964

    Article  Google Scholar 

  5. D.C. De Cooman, O. Kwon, and K.G. Chin, State-of-the-knowledge on TWIP Steel, Mater. Sci. Technol., 2012, 28, p 513–527

    Article  Google Scholar 

  6. J.E. Jin and Y.K. Lee, Effects of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel, Acta Mater., 2012, 60, p 1680–1688

    Article  Google Scholar 

  7. K.H. Jeong, J.E. Jin, Y.S. Jung, S.G. Kang, and Y.K. Lee, The Effects of Si on the Mechanical Twinning and Strain Hardening of Fe-18Mn-0.6C Twinning-Induced Plasticity Steel, Acta Mater., 2013, 61, p 3399–3410

    Article  Google Scholar 

  8. H.Y. Yen, M. Huang, C.P. Scott, and J.R. Yang, Interactions Between Deformation-Induced Defects and Carbides in a Vanadium-Containing TWIP Steel, Scripta Mater., 2012, 66, p 1018–1023

    Article  Google Scholar 

  9. S.G. Kang, J.G. Jung, and Y.K. Lee, Effects of Niobium on Mechanical Twinning and Tensile Properties of a High Mn Twinning-Induced Plasticity Steel, Mater. Trans., 2012, 53, p 2187–2190

    Article  Google Scholar 

  10. F. Reyes-Calderon, I. Mejia, and J.M. Cabrera, Hot Deformation Activation Energy (QHW) of Austenitic Fe-22Mn-1.5Al-1.5Si-0.4C TWIP Steels Microalloyed with Nb, V, and Ti, Mater. Sci. Eng. A, 2013, 562, p 46–52

    Article  Google Scholar 

  11. F. Reyes-Calderon, I. Mejia, A. Boulaajaj, and J.M. Cabrera, Effect of Microalloying Elements (Nb, V and Ti) on the Hot Flow Behavior of High-Mn Austenitic Twinning Induced Plasticity (TWIP) Steel, Mater. Sci. Eng. A, 2013, 560, p 552–560

    Article  Google Scholar 

  12. I. Mejia, A.E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo, and J.M. Cabrera, Effect of Nb and Mo on the Hot Ductility Behavior of a High-manganese Austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP Steel, Mater. Sci. Eng. A, 2014, 616, p 229–239

    Article  Google Scholar 

  13. A.E. Salas-Reyes, I. Mejia, A. Bedolla-Jacuinde, A. Boulaajaj, J. Calvo, and J.M. Cabrera, Hot Ductility Behavior of High-Mn Austenitic Fe-22Mn-1.5Al-1.5Si-0.45C TWIP Steels Microalloyed with Ti and V, Mater. Sci. Eng. A, 2014, 611, p 77–89

    Article  Google Scholar 

  14. D.T. Pierce, J.A. Jimenez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig, The Influence of Manganese Content on the Stacking Fault and Austenite/ε-martensite Interfacial Energies in Fe-Mn-(Al-Si) Steels Investigated by Experiment and Theory, Acta Mater., 2014, 68, p 238–253

    Article  Google Scholar 

  15. D. Zamani, A. Najafizadeh, H. Monajati, and G. Razavi, The Effect of Thermo-Mechanical Treatment and Adding Niobium and Titanium on Microstructure and Mechanical Properties of TWIP Steel, Int. J. Appl. Phys. Math., 2011, 1, p 195–198

    Article  Google Scholar 

  16. K.M. Rahman, V.A. Vorontsov, and D. Dye, The Effect of Grain Size on the Twin Initiation Stress in a TWIP Steel, Acta Mater., 2015, 89, p 247–257

    Article  Google Scholar 

  17. K. Renard and P.J. Jacques, On the Relationship Between Work Hardening and Twinning Rate in TWIP Steels, Mater. Sci. Eng. A, 2012, 542, p 8–14

    Article  Google Scholar 

  18. Ahmed A. Saleh, Elena V. Pereloma, and Azdiar A. Gazder, Microstructure and Texture Evolution in a Twinning-Induced-Plasticity Steel During Uniaxial Tension, Acta Mater., 2013, 61, p 2671–2691

    Article  Google Scholar 

  19. Y.T. Zhu, X.Z. Liao, X.L. Wu, and J. Narayan, Grain Size Effect on Deformation Twinning and Detwinning, J. Mater. Sci., 2013, 48, p 4467–4475

    Article  Google Scholar 

  20. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige, Tensile Properties and Twinning Behavior of High Manganese Austenitic Steel with Fine-Grained Structure, Scripta Mater., 2008, 59, p 963–966

    Article  Google Scholar 

  21. J.P. Chateau, A. Dumay, S. Allain, and A. Jacques, Precipitation Hardening of a FeMnC TWIP Steel by Vanadium Carbides, Proceedings of the 15th International Conference on Strength of Materials (ICSMA-15), J. Physics: Conf. Series, 2010, 240, p 012023

  22. S. Vervynckt, K. Verbeken, P. Thibaux, M. Liebeherr, and Y. Houbaert, Austenite Recrystallization-Precipitation Interaction in Niobium Microalloyed Steels, ISIJ Int., 2009, 49, p 911–920

    Article  Google Scholar 

  23. J.E. Jin and Y.K. Lee, Strain Hardening Behavior of a Fe-18Mn-0.6C-1.5Al TWIP Steel, Mater. Sci. Eng. A, 2009, 527, p 157–161

    Article  Google Scholar 

  24. S. Sato, E.P. Kwon, M. Imafuku, K. Wagatsuma, and S. Suzuki, Microstructural Characterization of High-Manganese Austenitic Steels with Different Stacking Fault Energies, Mater. Charact., 2011, 62, p 781–788

    Article  Google Scholar 

  25. S. Suzuki, K. Hotta, E.P. Kwon, S. Fujieda, K. Shinoda, M. Kumagai, K. Kajiwara, M. Sato, and S. Sato, Characterization of Evolution of Microscopic Stress and Strain in High-Manganese Twinning-Induced Plasticity Steel, ISIJ Int., 2015, 55, p 2158–2165

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly supported by research projects from the Korea Institute of Industrial Technology and R&D program of the Small & Medium Business Administration, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui Pyo Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, E.P., Kim, D.Y. & Park, H.K. Deformation Twinning in Nb-Microalloyed Fe-Mn-C-Al Twinning-Induced Plasticity Steel. J. of Materi Eng and Perform 26, 4500–4507 (2017). https://doi.org/10.1007/s11665-017-2898-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2898-x

Keywords

Navigation