Skip to main content

Advertisement

Log in

Effects of Dy, Sr and Die Casting on Microstructure, Mechanical and Corrosion Properties of Mg-Dy-Sr-Nd-Zr Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

By adding 2, 6 and 10 wt.% Dy and 0.5, 1.5 and 2 wt.% Sr elements to Mg-2.4Nd-0.5Zr alloys and adopting die-casting process for biomedical Mg-10Dy-0.5Sr-2.4Nd-0.5Zr alloys, the effects of Dy and Sr elements and die-casting process on the microstructure, mechanical properties and corrosion resistance of Mg-Dy-Sr-Nd-Zr alloys were investigated. The new biomedical Mg-10Dy-0.5Sr-2.4Nd-0.5Zr alloys were designed, and the grain size of the as-cast new alloy was refined to ~70 μm and distributed equably. The ultimate tensile strength increased with increasing Dy content and decreasing Sr content. The corrosion rate decreased firstly and then increased with increasing Dy content and decreased with increasing Sr content. By adjusting the content of Sr and Dy, the ultimate tensile strength of as-cast new Mg-10Dy-0.5Sr-2.4Nd-0.5Zr alloys increased to 203 MPa, elongation was 7.4%, and the corrosion rate decreased to 0.48 mm/a. The elongation rate increased to 10.2% after the new biomedical alloys were processed by die casting with an refine-grained microstructure of ~18 μm, meanwhile the ultimate tensile strength decreased to 180 MPa, and the corrosion rate was 1.29 mm/a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.I.Z. Abidin, A.D. Forno, M. Bestetti, D. Martin, A. Beer, and A. Atrens, Evaluation of Coatings for Mg Alloys for Biomedical Applications, Adv. Eng. Mater., 2015, 17, p 58–67

    Article  Google Scholar 

  2. J. Zhou, Q. Li, H. Zhang, and F. Chen, Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments, J. Mater. Eng. Perform., 2014, 23, p 181–186

    Article  Google Scholar 

  3. J.-Y. Lee, G. Han, Y.-C. Kim, J.-Y. Byun, J. Jang, H.-K. Seok, and S.-J. Yang, Effects of Impurities on the Biodegradation Behavior of Pure Magnesium, Met. Mater. Int., 2009, 15, p 955–961

    Article  Google Scholar 

  4. T. Imwinkelried, S. Beck, T. Iizuka, and B. Schaller, Effect of a Plasmaelectrolytic Coating on the Strength Retention of In Vivo and In Vitro Degraded Magnesium Implants, Acta Biomater., 2013, 9, p 8643–8649

    Article  Google Scholar 

  5. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: a Review, Biomaterials, 2006, 27, p 1728–1734

    Article  Google Scholar 

  6. H.R. Bakhsheshi-Rad, E. Hamzah, M.R. Abdul-Kadir, Safaa N. Saud, M. Kasiri-Asgarani, and R. Ebrahimi-Kahrizsangi, The Mechanical Properties and Corrosion Behavior of Double-Layered Nano Hydroxyapatite-Polymer Coating on Mg-Ca Alloy, J. Mater. Eng. Perform., 2015, 24, p 4010–4021

    Article  Google Scholar 

  7. A. Atrens, G.-L. Song, M. Liu, Z.-M. Shi, F.-Y. Cao, and M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater., 2015, 17, p 400–453

    Article  Google Scholar 

  8. H.R. Bakhsheshi-Rad, E. Hamzah, S. Farahany, and M. Staiger, The Mechanical Properties and Corrosion Behavior of Quaternary Mg-6Zn-0.8Mn-xCa Alloys, J. Mater. Eng. Perform., 2015, 24, p 598–608

    Article  Google Scholar 

  9. M.-B. Yang, M.-D. Hou, J. Zhang, and F.-S. Pan, Effects of Ce, Y and Gd Additions on As-Cast Microstructure and Mechanical Properties of Mg-3Sn-2Sr Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24, p 2497–2506

    Article  Google Scholar 

  10. E. Willbold, X.-N. Gu, D. Albert, K. Kalla, K. Bobe, M. Brauneis, C. Janning, J. Nellesen, W. Czayka, W. Tillmann, Y.F. Zheng, and F. Witte, Effect of the Addition of Low Rare Earth Elements (Lanthanum, Neodymium, Cerium) on the Biodegradation and Biocompatibility of Magnesium, Acta Biomater., 2015, 11, p 554–562

    Article  Google Scholar 

  11. N.G. Wang, R.C. Wang, C.Q. Peng, and Y. Feng, Corrosion Behavior of Magnesium Alloy AP65 in 3.5% Sodium Chloride Solution, J. Mater. Eng. Perform., 2012, 21, p 1300–1308

    Article  Google Scholar 

  12. F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Evaluation of Short-Term Effects of Rare Earth and Other Elements Used in Magnesium Alloys on Primary Cells and Cell Lines, Acta Biomater., 2010, 6, p 1834–1842

    Article  Google Scholar 

  13. X.N. Gu, Y.F. Zheng, Y. Cheng, S.P. Zhong, and T.F. Xi, In Vitro Corrosion and Biocompatibility of Binary Mg-1 wt.% X Alloys, Biomaterials, 2009, 30, p 484–498

    Article  Google Scholar 

  14. R. Erbel, C.D. Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Böse, J. Koolen, T.F. Lüscher, N. Weissman, and R. Waksman, Temporary Scaffolding of Coronary Arteries with Bioabsorbable Magnesium Stents: A Prospective, Non-randomised Multicentre Trial, Lancet, 2007, 369, p 1869–1875

    Article  Google Scholar 

  15. R. Waksman, R. Pakala, P.K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F.O. Tio, E. Wittchow, S. Hartwig, C. Harder, R. Rohde, B. Heublein, A. Andreae, K.-H. Waldmann, and A. Haverich, Safety and Efficacy of Bioabsorbable Magnesium Alloy Stents in Porcine Coronary Arteries, Catheter. Cardiovasc. Interv., 2006, 68, p 607–617

    Article  Google Scholar 

  16. P. Erne, M. Schier, and T.J. Resink, The Road to Bioabsorbable Stents: Reaching Clinical Reality?, Cardiovasc. Intervent. Radiol., 2005, 29, p 11–16

    Article  Google Scholar 

  17. B. Smola, L. Joska, V. Březina, I. Stulíková, and F. Hnilica, Microstructure, Corrosion Resistance and Cytocompatibility of Mg-5Y-4Rare Earth-0.5Zr (WE54) Alloy, Mater. Sci. Eng. C, 2012, 32, p 659–664

    Article  Google Scholar 

  18. L. Yang, Y. Huang, F. Feyerabend, R. Willumeit, C. Mendis, K.U. Kainer, and N. Hort, Microstructure, Mechanical and Corrosion Properties of Mg-Dy-Gd-Zr Alloys for Medical Applications, Acta Biomater., 2013, 9, p 8499–8508

    Article  Google Scholar 

  19. Y.C. Wan, S.N. Jiang, C.M. Liu, B.Z. Wang, and Z.Y. Chen, Effect of Nd and Dy on the Microstructure and Mechanical Property of the as Extruded Mg-1Zn-0.6Zr Alloy, Mater. Sci. Eng. A, 2015, 625, p 158–163

    Article  Google Scholar 

  20. L. Yang, Y.-D. Huang, F. Feyerabend, R. Willumeit, K.U. Kainer, and N. Hort, Influence of Ageing Treatment on Microstructure, Mechanical and Bio-corrosion Properties of Mg-Dy Alloys, J. Mech. Behav. Biomed., 2012, 13, p 36–44

    Article  Google Scholar 

  21. I.S. Berglund, B.Y. Jacobs, K.D. Allen, S.E. Kim, A. Pozzi, J.B. Allen, and M.V. Manuel, Peri-implant Tissue Response and Biodegradation Performance of a Mg-1.0Ca-0.5Sr Alloy in Rat Tibia, Mater. Sci. Eng. C, 2016, 62, p 79–85

    Article  Google Scholar 

  22. D. Tie, R.-G. Guan, H.-N. Liu, A. Cipriano, Y.-L. Liu, Q. Wang, Y.-D. Huang, and N. Hort, An In Vivo Study on the Metabolism and Osteogenic Activity of Bioabsorbable Mg-1Sr Alloy, Acta Biomater., 2016, 29, p 455–467

    Article  Google Scholar 

  23. D.X. Liu, Y.T. Ding, T.B. Guo, X.Q. Qin, C.G. Guo, S.K. Yu, and S.L. Lin, Influence of Fine-Grain and Solid-Solution Strengthening on Mechanical Properties and In Vitro Degradation of WE43 Alloy, Biomed. Mater., 2014, 9, p 015014

    Article  Google Scholar 

  24. Y.-L. Zhou, Y.-C. Li, D.-M. Luo, Y.-F. Ding, and P. Hodgson, Microstructures, Mechanical and Corrosion Properties and Biocompatibility of as Extruded Mg-Mn-Zn-Nd Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2015, 49, p 93–100

    Article  Google Scholar 

  25. G.T. Bae, J.H. Bae, D.H. Kang, H. Lee, and N.J. Kim, Effect of Ca Addition on Microstructure of Twin-Roll Cast AZ31Mg Alloy, Met. Mater. Int., 2009, 15, p 1–5

    Article  Google Scholar 

  26. O.B. Kulyasova, R.K. Islamgaliev, Y.-H. Zhao, and R.Z. Valiev, Enhancement of the Mechanical Properties of an Mg-Zn-Ca Alloy Using High-Pressure Torsion, Adv. Eng. Mater., 2015, 17, p 1738–1741

    Article  Google Scholar 

  27. Y. Beygelzimer, Y. Estrin, and R. Kulagin, Synthesis of Hybrid Materials by Severe Plastic Deformation: A New Paradigm of SPD Processing, Adv. Eng. Mater., 2015, 17, p 1853–1861

    Article  Google Scholar 

  28. M. Furukawa, Z. Horita, and T.G. Langdon, Developing Ultrafine Grain Sizes Using Severe Plastic Deformation, Adv. Eng. Mater., 2001, 3, p 121–125

    Article  Google Scholar 

  29. Q.-L. Wang and S.-M. Xiong, Vacuum Assisted High-Pressure Die Casting of AZ91D Magnesium Alloy at Different Slow Shot Speeds, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3051–3059

    Article  Google Scholar 

  30. S. Gavras, M.A. Easton, M.A. Gibson, S.-M. Zhu, and J.-F. Nie, Microstructure and Property Evaluation of High-Pressure Die-Cast Mg-La-Rare Earth (Nd, Y or Gd) Alloys, J. Alloys Compd., 2014, 597, p 21–29

    Article  Google Scholar 

  31. Z.-Q. Wang, B. Zhang, D.-J. Li, R. Fritzsch, X.-Q. Zeng, H.J. Roven, and W.-J. Ding, Effect of Heat Treatment on Microstructures and Mechanical Properties of High Vacuum Die Casting Mg-8Gd-3Y-0.4Zr Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3762–3768

    Article  Google Scholar 

  32. H.T. Kang and T. Ostrom, Mechanical Behavior of Cast and Forged Magnesium Alloys and Their Microstructures, Mater. Sci. Eng. A, 2008, 490, p 52–56

    Article  Google Scholar 

  33. L.-L. Shi, Y.D. Huang, L. Yang, F. Feyerabend, C. Mendis, R. Willumeit, K.U. Kainer, and N. Hort, Mechanical Properties and Corrosion Behavior of Mg-Gd-Ca-Zr Alloys for Medical Applications, J. Mech. Behav. Biomed., 2015, 47, p 38–48

    Article  Google Scholar 

  34. A.A. Nayeb-Hashemi and J.B. Clark, Phase Diagram of Binary Magnesium Alloys, ASM International, Metal Park, 1988

    Google Scholar 

  35. J.-W. Chang, X.-W. Guo, P.-H. Fu, L.-M. Peng, and W.-J. Ding, Relationship Between Heat Treatment and Corrosion Behaviour of Mg-3.0%Nd-0.4%Zr Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2007, 17, p 1152–1157

    Article  Google Scholar 

  36. A.A. Nayeb-Hashemi and J.B. Clark, The Mg-Sr (Magnesium-Strontium) System, Bull. AlloyS Phase Diagr., 1986, 7, p 149–156

    Article  Google Scholar 

  37. L. Yang, Y.-D. Huang, Q.-M. Peng, F. Feyerabend, K.U. Kainer, R. Willumeit, and N. Hort, Mechanical and Corrosion Properties of Binary Mg-Dy Alloys for Medical Applications, Mater. Sci. Eng. B, 2011, 176, p 1827–1834

    Article  Google Scholar 

  38. S.-Y. Li, D.-J. Li, X.-Q. Zeng, and W.-J. Ding, Microstructure and Mechanical Properties of Mg-6Gd-3Y-0.5Zr Alloy Processed by High-Vacuum Die-Casting, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3769–3776

    Article  Google Scholar 

  39. A. Abdal-hay, A. Hasan, Y.-K. Kim, M.-H. Lee, A.S. Hamdy, and K.A. Khalil, Biocorrosion Behavior of Biodegradable Nanocomposite Fibers Coated Layer-by-Layer on AM50 Magnesium Implant, Mater. Sci. Eng. C, 2016, 58, p 1232–1241

    Article  Google Scholar 

  40. X.-B. Zhang, G.-Y. Yuan, L. Mao, J.-L. Niu, and W.-J. Ding, Biocorrosion Properties of As-Extruded Mg-Nd-Zn-Zr Alloy Compared with Commercial AZ31 and WE43 Alloys, Mater. Lett., 2012, 66, p 209–211

    Article  Google Scholar 

  41. L. Yang, N. Hort, D. Laipple, D. Höche, Y.-D. Huang, K.U. Kainer, R. Willumeit, and F. Feyerabend, Element Distribution in the Corrosion Layer and Cytotoxicity of Alloy Mg-10Dy During in Vitro Biodegradation, Acta Biomater., 2013, 9, p 8475–8487

    Article  Google Scholar 

  42. D.X. Liu, C.G. Guo, L.Q. Chai, V.R. Sherman, X.Q. Qin, Y.T. Ding, and M.A. Meyers, Mechanical Properties and Corrosion Resistance of Hot Extruded Mg-2.5Zn-1Ca Alloy, Mater. Sci. Eng. B, 2015, 195, p 50–58

    Article  Google Scholar 

  43. R.C. Zeng, W. Dietzel, F. Witte, and N. Hort, The Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater., 2008, 10, p B3–B14

    Article  Google Scholar 

  44. R.C. Zeng, K.U. Kainer, C. Blawert, and W. Dietzel, Corrosion of an Extruded Magnesium Alloy ZK60 Component—The Role of Microstructural Features, J. Alloys Compd., 2011, 509, p 4462–4469

    Article  Google Scholar 

  45. X.N. Gu, X.H. Xie, N. Li, Y.F. Zheng, and L. Qin, In Vitro and In Vivo Studies on a Mg-Sr Binary Alloy System Developed as a New Kind of Biodegradable Metal, Acta Biomater., 2012, 8, p 2360–2374

    Article  Google Scholar 

  46. G. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 1, p 11–33

    Article  Google Scholar 

  47. G. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858

    Article  Google Scholar 

  48. X.B. Zhang, X.C. He, Y.J. Xue, Z.Z. Wang, and Q. Wang, Effects of Sr on Microstructure and Corrosion Resistance in Simulated Body Fluid of As Cast Mg-Nd-Zr Magnesium Alloys, Corros. Eng. Sci. Technol., 2014, 49, p 345–351

    Article  Google Scholar 

Download references

Acknowledgments

Dexue Liu was supported by the National Nature Science Foundation of China under Grant Nos. 51365029 and 51664041. This work was also supported in part by the Fundamental Research Funds for the Universities in Gansu Province and the Program for Support Projects of Science and Technology in Gansu Province under Grant No. 1604GKCA038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexue Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Yin, X., Pang, X. et al. Effects of Dy, Sr and Die Casting on Microstructure, Mechanical and Corrosion Properties of Mg-Dy-Sr-Nd-Zr Alloys. J. of Materi Eng and Perform 26, 3983–3992 (2017). https://doi.org/10.1007/s11665-017-2850-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2850-0

Keywords

Navigation