Skip to main content

Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM)

Abstract

Additive manufacturing (AM) techniques allow the preparation of tailor-made structures for specific applications with a high flexibility in regard to shape and design. The lithography-based ceramic manufacturing (LCM) technology allows the AM of high-performance alumina and zirconia components. There are still some restrictions in regard to possible geometries. The opportunities and limits of the LCM technology are discussed in the following paper using the example of ceramic heat exchangers. Structures are presented which combine a large surface for heat exchange with a small component volume and low pressure drop. This paper concludes summarizing the essential remarks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. ASTM-Standard F2792 -12a: Standard Terminology for Additive Manufacturing Technologies. March 1, 2012, ASTM International Distributed under ASTM license by Beuth Publisher.

  2. U. Lakshminarayan, S. Ogrydiziak, and H.L. Marcus, Selective lasersintering of ceramic materials. Proceedings of Solid Free-Form Symposium, 1990, p. 16–26

  3. A. Lauder, M.J. Cima, E. Sachs, and T. Fan, Three dimensional printing: surface finish and microstructure of rapid prototyped components, Mater. Res. Soc. Symp. Proc., 1992, 249, p 331–336

    Article  Google Scholar 

  4. K. Pham-Gia, W. Rossner, B. Wessler, M. Schäfer, and M. Schwarz, Rapid Prototyping of high-density alumina ceramics using stereolithography, cfi/ Ber, DKG, 2006, 83, p 36–40

    Google Scholar 

  5. T. Chartier, C. Duterte, N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, and C.J. Chaput, Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes, J. Am. Ceram. Soc., 2008, 91, p 2469–2474

    Google Scholar 

  6. M.L. Griffith and J.W. Halloran, Freeform fabrication of ceramics via stereolithography, J. Am. Ceram. Soc., 1996, 79, p 2601–2608

    Article  Google Scholar 

  7. A. Licciulli, C.E. Corcione, A. Greco, V. Amicarelli, and A. Maffezzoli, Laser stereolithography of ZrO2 toughened Al2O3, J. Europ. Ceram. Soc., 2005, 25, p 1581–1589

    Article  Google Scholar 

  8. Y. de Hazan, M. Thänert, M. Trunec, and J. Misak, Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks, J. Europ. Ceram. Soc., 2012, 32, p 1187–1198

    Article  Google Scholar 

  9. R. Felzmann, S. Gruber, G. Mitteramskogler, P. Tesavibul, A.R. Boccaccini, R. Liska, and J. Stampfl, Lithography-based additive manufacturing of cellular ceramic structures, Adv. Eng. Mater., 2012, 14, p 1052–1058

    Article  Google Scholar 

  10. R. Lenk, A. Nagy, H.-J. Richter, and A. Techel, Material development for laser sintering of silicon carbide, cfi/ Ber, DKG, 2006, 83, p 41–43

    Google Scholar 

  11. P. Regenfuss, R. Ebert, and H. Exner, Laser Micro Sintering—a versatile instrument for the generation of microparts, Laser Tech. J., 2007, 4, p 26–31

    Article  Google Scholar 

  12. Y.-C. Hagedorn, J. Wilkes, W. Meiners, K. Wissenbach, and R. Poprawe, Net shaped high performance oxide ceramic parts by selective laser melting, Phys. Proced., 2010, 5, p 587–594

    Article  Google Scholar 

  13. Y. Wu, J. Du, K.-L. Choy, and L.L. Hench, Laser densification of alumina powder beds generated using aerosol spray deposition, J. Europ. Ceram. Soc., 2007, 27, p 4727–4735

    Article  Google Scholar 

  14. R.D. Goodridge, J.C. Lorrison, K.W. Dalgarno, and D.J. Wood, Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics, Glass Technol., 2004, 45, p 94–96

    Google Scholar 

  15. U. Gbureck, T. Hoelzel, I. Biermann, J. Barralet, L.M. Grover, Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping J. Mater. Sci.: Mater. Med. 19, 1559–1563 (2008)

  16. H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Biomed. Mater. Res. Part B: Appl. Biomater. 74B, 782–788 (2005)

  17. A. Khalyfa, W. Meyer, M. Schnabelrauch, S. Vogt, and H.-J. Richter, Manufacturing of biocompatible ceramic bone substitutes by 3D-printing, cfi/ Ber, DKG, 2006, 83, p 23–26

    Google Scholar 

  18. U. Deisinger, F. Irlinger, R. Pelzer, and G. Ziegler, 3D-printing of HA-scaffolds for the application as bone substitute material, cfi/Ber, DKG, 2006, 83, p 75–78

    Google Scholar 

  19. F. Dombrowski, P.W.G. Caso, M.W. Laschke, M. Klein, J. Guenster, and G. Berger, 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates, Key Eng. Mater., 2013, 529–530, p 138–142

    Google Scholar 

  20. A. Zocca, C.M. Gomes, E. Bernardo, R. Müller, J. Günster, and P. Colombo, LAS glass–ceramic scaffolds by three-dimensional printing, J. Europ. Ceram. Soc., 2013, 33, p 1525–1533

    Article  Google Scholar 

  21. Z. Sadeghian, J.G. Heinrich, and F. Moztarzadeh, Direct laser sintering of hydroxyapatite implants by Layerwise slurry deposition (LSD), cfi/Ber, DKG, 2004, 81(12), p E39–E43

    Google Scholar 

  22. B. Cappi, E. Oezkol, J. Ebert, and R. Telle, Direct inkjet printing of Si3N4: characterization of ink, green bodies, and microstructure, J. Europ. Ceram. Soc., 2008, 28, p 2625–2628

    Article  Google Scholar 

  23. J. Ebert, E. Özkol, A. Zeichner, K. Uibel, Ö. Weiss, U. Koops, R. Telle, and H. Fischer, Direct Iinkjet printing of dental prostheses made of zirconia, J. Dent. Res., 2009, 88, p 673–676

    Article  Google Scholar 

  24. M. Allahverdi, S.C. Danforth, M. Jafari, and A. Safari, Processing of advanced electroceramic components by fused deposition technique, J. Europ. Ceram. Soc., 2001, 21, p 1485–1490

    Article  Google Scholar 

  25. S. Bose, J. Darsell, H. Hosick, L. Yang, D.K. Sarkar, A. Bandyopadhyay, Processing and characterization of porous alumina scaffolds. J. Mater. Sci.: Mater. Med. 13, 23–28 (2002)

  26. T. Schlordt, S. Schwanke, F. Keppner, T. Fey, N. Travitzky, and P. Greil, Robocasting of alumina hollow filament lattice structures, J. Europ. Ceram. Soc., 2013, 33, p 3243–3248

    Article  Google Scholar 

  27. K. Cai, B. Roman-Manso, J.E. Smay, J. Zhou, M.I. Osendi, M. Belmonte, and P. Miranzo, Geometrically complex silicon carbide structures fabricated by robocasting, J. Am. Ceram. Soc., 2012, 95, p 2660–2666

    Article  Google Scholar 

  28. D. Polsakiewicz and W. Kollenberg, Process and materials development for functionalized printing in three dimensions (FP-3D), refractories. WORLDFORUM, 4, 1–8 (2012)

  29. T. Chartier, A. Badev, Rapid Prototyping of Ceramics. in Handbook of Advanced Ceramics (Elsevier, Oxford, 2013)

  30. N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, Additive manufacturing of ceramic-based materials, Adv. Eng. Mater., 2014, 16, p 729–754

    Article  Google Scholar 

  31. A. Zocca, P. Colombo, C.M. Gomes, and J. Günster, Additive manufacturing of ceramics: issues, potentialities, and opportunities, J. Am. Ceram. Soc., 2015, 98(7), p 1983–2001

    Article  Google Scholar 

  32. U. Scheithauer, A. Bergner, E. Schwarzer, H.-J. Richter, T. Moritz, Studies on thermoplastic 3D Printing of steel-zirconia composites. J. Mat. Res. 29(17), 1931–1940 (2014)

  33. U. Scheithauer, T. Slawik, E. Schwarzer, H.-J. Richter, T. Moritz, A. Michaelis, Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing. J. Ceram. Sci. Tech. 06(02), 125–132 (2015)

  34. U. Scheithauer, E. Schwarzer, G. Ganzer, A. Körnig, W. Beckert, E. Reichelt, M. Jahn, A. Härtel, H.-J. Richter, T. Moritz, and A. Michaelis, Micro-reactors made by Lithography-based Ceramic Manufacturing (LCM). in Proceedings of 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications 2015, Vancouver, Ceramic Transactions, 2016, 258, The American Ceramic Society

  35. U.K. Fischer, N. Moszner, V. Rheinberger, W. Wachter, J. Homa, and W. Längle, Lichthärtende Keramikschlicker für die stereolithographische Herstellung von hochfesten Keramiken (light curing ceramic suspensions for stereolithography of high-strength ceramics), european patent EP 2404590A1, published 11.01.2012

  36. J. Homa, Rapid Prototyping of High-Performance Ceramics Opens New Opportunities for the CIM Industry. Powder Injection Mould. Int. 6(3) (2012)

  37. E. Schwarzer, M. Götz, D. Markova, D. Stafford, U. Scheithauer, T. Moritz, Lithography-based Ceramic Manufacturing (LCM)—Development of a possible process chain for the additive manufacturing of personalized medical products. J. Eur. Cer. Soc. (submitted for publication in 2017)

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 678503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Scheithauer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scheithauer, U., Schwarzer, E., Moritz, T. et al. Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM). J. of Materi Eng and Perform 27, 14–20 (2018). https://doi.org/10.1007/s11665-017-2843-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2843-z

Keywords

  • additive manufacturing
  • alumina
  • ceramics
  • heat exchanger
  • lithography-based ceramic manufacturing
  • stereo-lithography