Additive Manufacturing of Ceramic Heat Exchanger: Opportunities and Limits of the Lithography-Based Ceramic Manufacturing (LCM)

  • Uwe ScheithauerEmail author
  • Eric Schwarzer
  • Tassilo Moritz
  • Alexander Michaelis


Additive manufacturing (AM) techniques allow the preparation of tailor-made structures for specific applications with a high flexibility in regard to shape and design. The lithography-based ceramic manufacturing (LCM) technology allows the AM of high-performance alumina and zirconia components. There are still some restrictions in regard to possible geometries. The opportunities and limits of the LCM technology are discussed in the following paper using the example of ceramic heat exchangers. Structures are presented which combine a large surface for heat exchange with a small component volume and low pressure drop. This paper concludes summarizing the essential remarks.


additive manufacturing alumina ceramics heat exchanger lithography-based ceramic manufacturing stereo-lithography 



This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 678503.


  1. 1.
    ASTM-Standard F2792 -12a: Standard Terminology for Additive Manufacturing Technologies. March 1, 2012, ASTM International Distributed under ASTM license by Beuth Publisher.Google Scholar
  2. 2.
    U. Lakshminarayan, S. Ogrydiziak, and H.L. Marcus, Selective lasersintering of ceramic materials. Proceedings of Solid Free-Form Symposium, 1990, p. 16–26Google Scholar
  3. 3.
    A. Lauder, M.J. Cima, E. Sachs, and T. Fan, Three dimensional printing: surface finish and microstructure of rapid prototyped components, Mater. Res. Soc. Symp. Proc., 1992, 249, p 331–336CrossRefGoogle Scholar
  4. 4.
    K. Pham-Gia, W. Rossner, B. Wessler, M. Schäfer, and M. Schwarz, Rapid Prototyping of high-density alumina ceramics using stereolithography, cfi/ Ber, DKG, 2006, 83, p 36–40Google Scholar
  5. 5.
    T. Chartier, C. Duterte, N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, and C.J. Chaput, Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes, J. Am. Ceram. Soc., 2008, 91, p 2469–2474Google Scholar
  6. 6.
    M.L. Griffith and J.W. Halloran, Freeform fabrication of ceramics via stereolithography, J. Am. Ceram. Soc., 1996, 79, p 2601–2608CrossRefGoogle Scholar
  7. 7.
    A. Licciulli, C.E. Corcione, A. Greco, V. Amicarelli, and A. Maffezzoli, Laser stereolithography of ZrO2 toughened Al2O3, J. Europ. Ceram. Soc., 2005, 25, p 1581–1589CrossRefGoogle Scholar
  8. 8.
    Y. de Hazan, M. Thänert, M. Trunec, and J. Misak, Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks, J. Europ. Ceram. Soc., 2012, 32, p 1187–1198CrossRefGoogle Scholar
  9. 9.
    R. Felzmann, S. Gruber, G. Mitteramskogler, P. Tesavibul, A.R. Boccaccini, R. Liska, and J. Stampfl, Lithography-based additive manufacturing of cellular ceramic structures, Adv. Eng. Mater., 2012, 14, p 1052–1058CrossRefGoogle Scholar
  10. 10.
    R. Lenk, A. Nagy, H.-J. Richter, and A. Techel, Material development for laser sintering of silicon carbide, cfi/ Ber, DKG, 2006, 83, p 41–43Google Scholar
  11. 11.
    P. Regenfuss, R. Ebert, and H. Exner, Laser Micro Sintering—a versatile instrument for the generation of microparts, Laser Tech. J., 2007, 4, p 26–31CrossRefGoogle Scholar
  12. 12.
    Y.-C. Hagedorn, J. Wilkes, W. Meiners, K. Wissenbach, and R. Poprawe, Net shaped high performance oxide ceramic parts by selective laser melting, Phys. Proced., 2010, 5, p 587–594CrossRefGoogle Scholar
  13. 13.
    Y. Wu, J. Du, K.-L. Choy, and L.L. Hench, Laser densification of alumina powder beds generated using aerosol spray deposition, J. Europ. Ceram. Soc., 2007, 27, p 4727–4735CrossRefGoogle Scholar
  14. 14.
    R.D. Goodridge, J.C. Lorrison, K.W. Dalgarno, and D.J. Wood, Comparison of direct and indirect selective laser sintering of porous apatite mullite glass ceramics, Glass Technol., 2004, 45, p 94–96Google Scholar
  15. 15.
    U. Gbureck, T. Hoelzel, I. Biermann, J. Barralet, L.M. Grover, Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping J. Mater. Sci.: Mater. Med. 19, 1559–1563 (2008)Google Scholar
  16. 16.
    H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Biomed. Mater. Res. Part B: Appl. Biomater. 74B, 782–788 (2005)Google Scholar
  17. 17.
    A. Khalyfa, W. Meyer, M. Schnabelrauch, S. Vogt, and H.-J. Richter, Manufacturing of biocompatible ceramic bone substitutes by 3D-printing, cfi/ Ber, DKG, 2006, 83, p 23–26Google Scholar
  18. 18.
    U. Deisinger, F. Irlinger, R. Pelzer, and G. Ziegler, 3D-printing of HA-scaffolds for the application as bone substitute material, cfi/Ber, DKG, 2006, 83, p 75–78Google Scholar
  19. 19.
    F. Dombrowski, P.W.G. Caso, M.W. Laschke, M. Klein, J. Guenster, and G. Berger, 3-D printed bioactive bone replacement scaffolds of alkaline substituted ortho-phosphates containing meta- and di-phosphates, Key Eng. Mater., 2013, 529–530, p 138–142Google Scholar
  20. 20.
    A. Zocca, C.M. Gomes, E. Bernardo, R. Müller, J. Günster, and P. Colombo, LAS glass–ceramic scaffolds by three-dimensional printing, J. Europ. Ceram. Soc., 2013, 33, p 1525–1533CrossRefGoogle Scholar
  21. 21.
    Z. Sadeghian, J.G. Heinrich, and F. Moztarzadeh, Direct laser sintering of hydroxyapatite implants by Layerwise slurry deposition (LSD), cfi/Ber, DKG, 2004, 81(12), p E39–E43Google Scholar
  22. 22.
    B. Cappi, E. Oezkol, J. Ebert, and R. Telle, Direct inkjet printing of Si3N4: characterization of ink, green bodies, and microstructure, J. Europ. Ceram. Soc., 2008, 28, p 2625–2628CrossRefGoogle Scholar
  23. 23.
    J. Ebert, E. Özkol, A. Zeichner, K. Uibel, Ö. Weiss, U. Koops, R. Telle, and H. Fischer, Direct Iinkjet printing of dental prostheses made of zirconia, J. Dent. Res., 2009, 88, p 673–676CrossRefGoogle Scholar
  24. 24.
    M. Allahverdi, S.C. Danforth, M. Jafari, and A. Safari, Processing of advanced electroceramic components by fused deposition technique, J. Europ. Ceram. Soc., 2001, 21, p 1485–1490CrossRefGoogle Scholar
  25. 25.
    S. Bose, J. Darsell, H. Hosick, L. Yang, D.K. Sarkar, A. Bandyopadhyay, Processing and characterization of porous alumina scaffolds. J. Mater. Sci.: Mater. Med. 13, 23–28 (2002)Google Scholar
  26. 26.
    T. Schlordt, S. Schwanke, F. Keppner, T. Fey, N. Travitzky, and P. Greil, Robocasting of alumina hollow filament lattice structures, J. Europ. Ceram. Soc., 2013, 33, p 3243–3248CrossRefGoogle Scholar
  27. 27.
    K. Cai, B. Roman-Manso, J.E. Smay, J. Zhou, M.I. Osendi, M. Belmonte, and P. Miranzo, Geometrically complex silicon carbide structures fabricated by robocasting, J. Am. Ceram. Soc., 2012, 95, p 2660–2666CrossRefGoogle Scholar
  28. 28.
    D. Polsakiewicz and W. Kollenberg, Process and materials development for functionalized printing in three dimensions (FP-3D), refractories. WORLDFORUM, 4, 1–8 (2012)Google Scholar
  29. 29.
    T. Chartier, A. Badev, Rapid Prototyping of Ceramics. in Handbook of Advanced Ceramics (Elsevier, Oxford, 2013)Google Scholar
  30. 30.
    N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, and P. Greil, Additive manufacturing of ceramic-based materials, Adv. Eng. Mater., 2014, 16, p 729–754CrossRefGoogle Scholar
  31. 31.
    A. Zocca, P. Colombo, C.M. Gomes, and J. Günster, Additive manufacturing of ceramics: issues, potentialities, and opportunities, J. Am. Ceram. Soc., 2015, 98(7), p 1983–2001CrossRefGoogle Scholar
  32. 32.
    U. Scheithauer, A. Bergner, E. Schwarzer, H.-J. Richter, T. Moritz, Studies on thermoplastic 3D Printing of steel-zirconia composites. J. Mat. Res. 29(17), 1931–1940 (2014)Google Scholar
  33. 33.
    U. Scheithauer, T. Slawik, E. Schwarzer, H.-J. Richter, T. Moritz, A. Michaelis, Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing. J. Ceram. Sci. Tech. 06(02), 125–132 (2015)Google Scholar
  34. 34.
    U. Scheithauer, E. Schwarzer, G. Ganzer, A. Körnig, W. Beckert, E. Reichelt, M. Jahn, A. Härtel, H.-J. Richter, T. Moritz, and A. Michaelis, Micro-reactors made by Lithography-based Ceramic Manufacturing (LCM). in Proceedings of 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications 2015, Vancouver, Ceramic Transactions, 2016, 258, The American Ceramic SocietyGoogle Scholar
  35. 35.
    U.K. Fischer, N. Moszner, V. Rheinberger, W. Wachter, J. Homa, and W. Längle, Lichthärtende Keramikschlicker für die stereolithographische Herstellung von hochfesten Keramiken (light curing ceramic suspensions for stereolithography of high-strength ceramics), european patent EP 2404590A1, published 11.01.2012Google Scholar
  36. 36.
    J. Homa, Rapid Prototyping of High-Performance Ceramics Opens New Opportunities for the CIM Industry. Powder Injection Mould. Int. 6(3) (2012)Google Scholar
  37. 37.
    E. Schwarzer, M. Götz, D. Markova, D. Stafford, U. Scheithauer, T. Moritz, Lithography-based Ceramic Manufacturing (LCM)—Development of a possible process chain for the additive manufacturing of personalized medical products. J. Eur. Cer. Soc. (submitted for publication in 2017)Google Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Uwe Scheithauer
    • 1
    Email author
  • Eric Schwarzer
    • 1
  • Tassilo Moritz
    • 1
  • Alexander Michaelis
    • 1
  1. 1.Fraunhofer Institute for Ceramic Technologies and Systems IKTSDresdenGermany

Personalised recommendations