Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

Abstract

This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish (A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    T. Baxevanis, A. Cox, and D. Lagoudas, Micromechanics of Precipitated Near-Equiatomic Ni-Rich NiTi Shape Memory Alloys, Acta Mech., 2014, 225, p 1–19

    Article  Google Scholar 

  2. 2.

    S.A. Shabalovskaya, On the Nature of the Biocompatibility and on Medical Applications of NiTi Shape Memory and Superelastic Alloys, Biomed. Mater. Eng., 1996, 6, p 267–289

    Google Scholar 

  3. 3.

    S.A. Fadlallah, N. El-Bagoury, S.M. Gad El-Rab, R.A. Ahmed, and G. El-Ousamii, An Overview of NiTi Shape Memory Alloy: Corrosion Resistance and Antibacterial Inhibition for Dental Application, J. Alloys Compd., 2014, 583, p 455–464

    Article  Google Scholar 

  4. 4.

    K. Gall, J. Tyber, G. Wilkesanders, S.W. Robertson, R.O. Ritchie, and H.J. Maier, Effect of Microstructure on the Fatigue of Hot-Rolled and Cold-Drawn NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2008, 486, p 389–403

    Article  Google Scholar 

  5. 5.

    D.A. Miller and D.C. Lagoudas, Thermomechanical Characterization of NiTiCu and NiTi SMA Actuators: Influence of Plastic Strains, Smart Mater. Struct., 2000, 9, p 640–652

    Article  Google Scholar 

  6. 6.

    J.A. Shaw and S. Kyriakides, Thermomechanical Aspects of NiTi, J. Mech. Phys. Solids, 1995, 43, p 1243–1281

    Article  Google Scholar 

  7. 7.

    D.A. Miller and D.C. Lagoudas, Influence of Cold Work and Heat Treatment on the Shape Memory Effect and Plastic Strain Development of NiTi, Mater. Sci. Eng. A Struct., 2001, 308, p 161–175

    Article  Google Scholar 

  8. 8.

    Y. Kaynak, H. Karaca, R. Noebe, and I. Jawahir, Analysis of Tool-Wear and Cutting Force Components in Dry, Preheated, and Cryogenic Machining of NiTI, Shape Memory Alloys, Procedia CIRP, 2013, 8, p 498–503

    Article  Google Scholar 

  9. 9.

    Y. Kaynak, H.E. Karaca, R.D. Noebe, and I.S. Jawahir, Tool-Wear Analysis in Cryogenic Machining of NiTi Shape Memory Alloys: A Comparison of Tool-Wear Performance with Dry and MQL Machining, Wear, 2013, 306, p 51–63

    Article  Google Scholar 

  10. 10.

    K. Weinert and V. Petzoldt, Machining of NiTi Based Shape Memory Alloys, Mater. Sci. Eng. A, 2004, 378, p 180–184

    Article  Google Scholar 

  11. 11.

    H.-C. Kim, J. Yum, B. Hur, and G.S.-P. Cheung, Cyclic Fatigue and Fracture Characteristics of Ground and Twisted Nickel-Titanium Rotary Files, J. Endod., 2010, 36, p 147–152

    Article  Google Scholar 

  12. 12.

    H. Huang, A study of High-Speed Milling Characteristics of Nitinol, Mater. Manuf. Process., 2004, 19, p 159–175

    Article  Google Scholar 

  13. 13.

    Y. Kaynak, H. Karaca, and I.S. Jawahir, Cryogenic Machining of NiTi Shape Memory Alloy, 6th International Conference and Exhibition on Design and Production of Machines and Dies/Molds, 2011, p 23–26

  14. 14.

    Y. Kaynak, H. Tobe, R.D. Noebe, H. Karaca, and I.S. Jawahir, The Effects of Machining on Microstructure and Transformation behavior of NiTi Alloy, Scr. Mater., 2014, 74, p 60–63

    Article  Google Scholar 

  15. 15.

    Y. Kaynak, H. Karaca, and I.S. Jawahir, Surface Integrity Characteristics of NiTi Shape Memory Alloys Resulting from Dry and Cryogenic Machining, Procedia CIRP, 2014, 13, p 393–398

    Article  Google Scholar 

  16. 16.

    Y. Kaynak, Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy, J. Mater. Eng. Perform., 2014, 23, p 3354–3360

    Article  Google Scholar 

  17. 17.

    Y. Kaynak, H.E. Karaca, and I.S. Jawahir, Cutting Speed Dependent Microstructure and Transformation Behavior of NiTi Alloy in Dry and Cryogenic Machining, J. Mater. Eng. Perform., 2015, 24, p 452–460

    Article  Google Scholar 

  18. 18.

    A.P. Stebner, S.C. Vogel, R.D. Noebe, T.A. Sisneros, B. Clausen, D.W. Brown, A. Garg, and L.C. Brinson, Micromechanical Quantification of Elastic, Twinning, and Slip Strain Partitioning Exhibited by Polycrystalline, Monoclinic Nickel-Titanium During Large Uniaxial Deformations Measured via In-Situ Neutron Diffraction, J. Mech. Phys. Solids, 2013, 61, p 2302–2330

    Article  Google Scholar 

  19. 19.

    O. Benafan, S.A. Padula, R.D. Noebe, T.A. Sisneros, and R. Vaidyanathan, Role of B19′ Martensite Deformation in Stabilizing Two-Way Shape Memory Behavior in NiTi, J. Appl. Phys., 2012, 112, p 093510–093511

    Article  Google Scholar 

  20. 20.

    K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50, p 511–678

    Article  Google Scholar 

  21. 21.

    Y. Kaynak, H.E. Karaca, R.D. Noebe, and I. Jawahir, The Effect of Active Phase of The Work Material on Machining Performance of a NiTi Shape Memory Alloy, Metall. Mater. Trans. A, 2015, 46, p 2625–2636

    Article  Google Scholar 

  22. 22.

    V. Sharma and M. Pandey, Optimization of Machining and Vibration Parameters for Residual Stresses Minimization in Ultrasonic Assisted Turning of 4340 Hardened Steel, Ultrasonics, 2016, 70, p 172–182

    Article  Google Scholar 

  23. 23.

    A. Thakur and S. Gangopadhyay, State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys, Int. J. Mach. Tools Manuf., 2016, 100, p 25–54

    Article  Google Scholar 

  24. 24.

    Q. Wang and Z. Liu, Plastic Deformation Induced Nano-Scale Twins in Ti-6Al-4V Machined Surface with High Speed Machining, Mater. Sci. Eng. A, 2016, 675, p 271–279

    Article  Google Scholar 

  25. 25.

    G. Rotella, O.W. Dillon, Jr., D. Umbrello, L. Settineri, and I.S. Jawahir, The Effects of Cooling Conditions on Surface Integrity in Machining of Ti6Al4V Alloy, Int. J. Adv. Manuf. Technol., 2014, 71, p 47–55

    Article  Google Scholar 

  26. 26.

    B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, Prentice Hall, Upper Saddle River, 2001

    Google Scholar 

  27. 27.

    M.E. Mitwally and M. Farag, Effect of Cold Work and Annealing on the Structure and Characteristics of NiTi Alloy, Mater. Sci. Eng. A, 2009, 519, p 155–166

    Article  Google Scholar 

  28. 28.

    I. Karaman, H.E. Karaca, Z. Luo, and H. Maier, The Effect of Severe Marforming on Shape Memory Characteristics of a Ti-Rich NiTi alloy Processed Using Equal Channel Angular Extrusion, Metall. Mater. Trans. A, 2003, 34, p 2527–2539

    Article  Google Scholar 

  29. 29.

    H. Shahmir, M. Nili-Ahmadabadi, M. Mansouri-Arani, and T.G. Langdon, The Processing of NiTi Shape Memory Alloys by Equal-Channel Angular Pressing at Room Temperature, Mater. Sci. Eng. A, 2013, 576, p 178–184

    Article  Google Scholar 

  30. 30.

    D.N.A. Shri, K. Tsuchiya, and A. Yamamoto, Surface Characterization of TiNi Deformed by High-Pressure Torsion, Appl. Surf. Sci., 2014, 289, p 338–344

    Article  Google Scholar 

  31. 31.

    J. Uchil, F. Fernandes, and K. Mahesh, X-Ray Diffraction Study of the Phase Transformations in NiTi Shape Memory Alloy, Mater. Charact., 2007, 58, p 243–248

    Article  Google Scholar 

  32. 32.

    S. De la Flor, C. Urbina, and F. Ferrando, Effect of Mechanical Cycling on Stabilizing the Transformation Behaviour of NiTi Shape Memory Alloys, J. Alloys Compd., 2009, 469, p 343–349

    Article  Google Scholar 

  33. 33.

    J. Olbricht, A. Yawny, A. Condó, F. Lovey, and G. Eggeler, The Influence of Temperature on the Evolution of Functional Properties During Pseudoelastic Cycling of Ultra Fine Grained NiTi, Mater. Sci. Eng. A, 2008, 481, p 142–145

    Article  Google Scholar 

  34. 34.

    Y. Kaynak, Process-Induced Surface Integrity in Machining of NiTi Shape Memory Alloys, University of Kentucky. Ph.D. Dissertation (2013)

  35. 35.

    A.S. Mahmud, H. Yang, S. Tee, G. Rio, and Y. Liu, Effect of Annealing on Deformation-Induced Martensite Stabilisation of NiTi, Intermetallics, 2008, 16, p 209–214

    Article  Google Scholar 

  36. 36.

    Y. Liu and D. Favier, Stabilisation of Martensite Due to Shear Deformation via Variant Reorientation in Polycrystalline NiTi, Acta Mater., 2000, 48, p 3489–3499

    Article  Google Scholar 

  37. 37.

    H. Lin, S. Wu, T. Chou, and H. Kao, The Effects of Cold Rolling on the Martensitic Transformation of an Equiatomic TiNi Alloy, Acta Metall. Mater., 1991, 39, p 2069–2080

    Article  Google Scholar 

  38. 38.

    Y. Liu and Z. Xie, Detwinning in Shape Memory Alloy, Progress in Smart Materials and Structures, P.L. Reece, Ed., Nova Science Publishers Inc, NY, 2007, p 29–65

    Google Scholar 

  39. 39.

    G. Tan and Y. Liu, Comparative Study of Deformation-Induced Martensite Stabilisation via Martensite Reorientation and Stress-Induced Martensitic Transformation in NiTi, Intermetallics, 2004, 12, p 373–381

    Article  Google Scholar 

  40. 40.

    J.T. Lim and D.L. McDowell, Degradation of an Ni-Ti Alloy During Cyclic Loading, 1994 North American Conference on Smart Structures and Materials, International Society for Optics and Photonics, 1994, p 326–341

Download references

Acknowledgments

Support from the NASA EPSCOR Program under Grant No. NNX11AQ31A and the NASA FAP Aeronautical Sciences Project are greatly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Kaynak.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaynak, Y., Huang, B., Karaca, H.E. et al. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions. J. of Materi Eng and Perform 26, 3597–3606 (2017). https://doi.org/10.1007/s11665-017-2791-7

Download citation

Keywords

  • cryogenic machining
  • DSC analysis
  • NiTi shape memory alloy
  • surface integrity
  • XRD analysis