Skip to main content
Log in

Evaluation of the Effect of Different Plasma-Nitriding Parameters on the Properties of Low-Alloy Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work is concerned with the surface treatment (ion nitriding) of different plasma-nitriding parameters on the characteristics of DIN 1.8519 low-alloy steel. The samples were nitrided from 500 to 570 °C for 5–40 h using a constant 25% N2-75% H2 gaseous mixture. Lower temperature (500–520 °C) favors the formation of compound layers of γ′ and ε iron nitrides in the surface layers, whereas a monophase γ′-Fe4 N layer can be obtained at a higher temperature. The hardness of this layer can be obtained when nitriding is performed at a higher temperature, and the hardness decreases when the temperature increases to 570 °C. These results indicate that pulsed plasma nitriding is highly efficient at 550 °C and can form thick and hard nitrided layers with satisfactory mechanical properties. The results show the optimized nitriding process at 540 °C for 20 h. This process can be an interesting means of enhancing the surface hardness of tool steels to forge dies compared to stamped steels with zinc coating with a reduced coefficient of friction and improving the anti-sticking properties of the tool surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Sun and T. Bell, Plasma Surface Engineering of Low Alloy Steel, Mater. Sci. Eng., 1991, A140, p 419–434

    Article  Google Scholar 

  2. A. Basu, J. Dutta, J. Majumdar, S. Alphonsa, I. Mukherjee, and I. Manna, Corrosion Resistance Improvement of High Carbon Low Alloy Steel by Plasma Nitriding, Mater. Lett., 2008, 62, p 3117–3120

    Article  Google Scholar 

  3. S. Akhtar, A.F.M. Arif, and B.S. Yilbas, Influence of Multiple Nitriding on the Case Hardening of H13 Tool Steel: Experimental and Numerical Investigation, Int. J. Adv. Manuf. Technol., 2011, 58(1), p 57–70

    Google Scholar 

  4. T. Hirsch, T.G.R. Clarke, and A. da Silva, Rocha, An In situ Study of Plasma Nitriding, Surf. Coat. Technol., 2007, 201(14), p 6380–6386

    Article  Google Scholar 

  5. J.D. Costa, J.M. Ferreira, and A.L. Ramalho, Fatigue and Fretting Fatigue of Ion-Nitrided 34CrNiMo6 Steel, Theor. Appl. Fract. Mech., 2001, 35, p 69–79

    Article  Google Scholar 

  6. T. Bell, Heat Treating. ASM Handbook, Vol 4, ASM International Ohio, Novelty, 1994, p 425

    Google Scholar 

  7. E. Borgiooli, E. Galvanetto, A. Fossati, and T. Bacci, Glow Discharge Nitriding and Post Oxidizing Treatment of AISI, H11 Steel, Surf. Coat. Technol., 2002, 162, p 61–66

    Article  Google Scholar 

  8. Th Lampe, S. Eisenberg, and E.R. Cabeo, Plasma Surface Engineering in the Automotive Industry-Tends and Future Prospective, Surf. Coat. Technol., 2003, 174–175, p 1–7

    Article  Google Scholar 

  9. B.Y. Jeong and M.H. Kim, Effects of Process Parameters on the Layer Formation Behavior of Plasma Nitrided Steels, Surf. Coat. Tech., 2001, 141(2–3), p 182–186

    Article  Google Scholar 

  10. L.N. Tang and M.F. Yan, Influence of Plasma Nitriding on the Microstructure, Wear, and Corrosion Properties of Quenched 30CrMnSiA Steel, J. Mat. Eng. Perf., 2013, 22(7), p 2121–2129

    Article  Google Scholar 

  11. G. Castro, A. Fernández-Vicente, and J. Cid, Influence of the Nitriding Time in the Wear Behaviour of an AISI, H13 Steel During a Crankshaft Forging Process, Wear, 2007, 263(7), p 1375–1385

    Article  Google Scholar 

  12. T. Steiner, S.R. Meka, E. Bischoff, T. Waldenmaier, and E.J. Mittemeijer, Nitriding of Ternary Fe–Cr–Mo Alloys; Role of the Cr/Mo-ratio, Surf. Coatings Technol., 2016, 291, p 21–33

    Article  Google Scholar 

  13. S.S. Hosmani, R.E. Schacherl, and E.J. Mittemeijer, Nitrogen Uptake by an Fe–V Alloy: Quantitative Analysis of Excess Nitrogen, Acta Mater., 2006, 54(10), p 2783–2792

    Article  Google Scholar 

  14. C.X. Li and T. Bell, Corrosion Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel, Corr. Sci., 2004, 46, p 1527–1547

    Article  Google Scholar 

  15. L.F. Zagonel, C.A. Figueroa, R. Droppa, Jr., and F. Alvarez, Influence of the Process Temperature on the Steel Microstructure and Hardening in Pulsed Plasma Nitriding, Surf. Coat. Technol., 2006, 201, p 452–457

    Article  Google Scholar 

  16. L.F. Zagonel, E.J. Mittemeijer, and F. Alvarez, Microstructure of Tool Steel After Low Temperature Ion Nitriding, Mater. Sci. Technol., 2009, 25(6), p 726–732

    Article  Google Scholar 

  17. F. Mahboubi and K. Abdolvahabi, The Effect of Temperature on Plasma Nitriding Behaviour of DIN 1.6959 Low Alloy Steel, Vacuum, 2006, 81(3), p 239–243

    Article  Google Scholar 

  18. Y. Sun, T. Bell, and A. Struct, Mater.: Prop. Microstruct. Process. Mater. Sci. Eng., 1997, 224, p 33

    Google Scholar 

  19. D. She, W. Yue, Z. Fu, Y. Gu, Ch Wang, and J. Liu, The Effect of Nitriding Temperature on Hardness and Microstructure of Die Steel Pre-treated by Ultrasonic Cold Forging Technology, Mater. Des., 2013, 49, p 392–399

    Article  Google Scholar 

  20. Sh Ahangarani, A.R. Sabour, and F. Mahboubi, Surface Modification of 30CrNiMo8 Low-Alloy Steel by Active Screen Setup and Conventional Plasma Nitriding Methods, Appl. Surf. Sci., 2007, 254(5), p 1427–1435

    Article  Google Scholar 

  21. P.M. Hekker, H.C.F. Rozendaal, and E.J. Mittemeijer, Excess Nitrogen and Discontinuous Precipitation in Nitrided Iron-Chromium Alloys, J. Mater. Sci., 1985, 20(2), p 718–729

    Article  Google Scholar 

  22. N.E.V. Díaz, R.E. Schacherl, L.F. Zagonel, and E.J. Mittemeijer, Influence of the Microstructure on the Residual Stresses of Nitrided Iron-Chromium Alloys, Acta Mater., 2008, 56(6), p 1196–1208

    Article  Google Scholar 

  23. H. Selg, E. Bischoff, S.R. Meka, R.E. Schacherl, T. Waldenmaier, and E.J. Mittemeijer, Molybdenum-Nitride Precipitation in Recrystallized and Cold-Rolled Fe-1 at. pct mo Alloy, Metall. Mater. Trans. A, 2013, 44(9), p 4059–4070

    Article  Google Scholar 

  24. R.E. Schacherl, P. Graat, and E.J. Mittemeijer, The Nitriding Kinetics of Iron-Chromium Alloys; The Role of Excess Nitrogen: Experiments and Modelling, Metall. Mater. Trans. A, 2004, 35, p 3387–3398

    Article  Google Scholar 

  25. P. Corengia, G. Ybarra, C. Moina, A. Cabo, and E. Broitman, Microstructural and Topographical Studies of DC-Pulsed Plasma Nitrided AISI, 4140 Low Alloy Steel, Surf. Coat. Technol., 2005, 200(7), p 2391–2397

    Article  Google Scholar 

  26. M. Kolnerová, Influence of Technological Parameters on Galling of Galvanized Sheets During Deep Drawing, Disertation, TU Liberec, 2005

  27. J. Sobotka, P. Solfronk, and P. Doubek, Using Contact-Less Optical Systems to Characterize and Measure Deformation of TWIP Materials, Phys. Proc., 2011, 22(2–7), p 1875–3892

    Google Scholar 

  28. D. She, W. Yue, Z. Fu, Y. Gu, Ch Wang, and J. Liu, The Effect of Nitriding Temperature on Hardness and Microstructure of Die Steel Pre-treated by Ultrasonic Cold Forging Technology, Mater. Des., 2013, 49, p 392–399

    Article  Google Scholar 

  29. T. Spalvins, Tribological and Microstructural Characteristics of Ion-Nitrided Steels, Thin Solid Films, 1983, 108, p 157–163

    Article  Google Scholar 

  30. E.J. Mittemeijer and M.A.J. Somers, Ed., Thermochemical Surface Engineering of Steels, 1st ed., Woodhead Elsevier, Cambridge, 2015

    Google Scholar 

  31. E. Zdravecká, J. Tkáčová, P. Solfronk, and J. Suchánek, Influence of Pulse Plasma Nitriding on Surface and Substrate System of 31CrMoV9 Steel, Problemy Eksploatacji, 2005, 57(2), p 161–170

    Google Scholar 

  32. R.G. Baker and J. Nutting, The Tempering of a Cr-Mo-V-W and a Mo-V Steel, Iron Steel Inst. Spec. Rep., 1959, 64, p 1–22 (Precipitation processes in steels)

    Google Scholar 

  33. N.E.V. Díaz, R.E. Schacherl, L.F. Zagonel, and E.J. Mittemeijer, Influence of the Microstructure on the Residual Stresses of Nitrided Iron-Chromium Alloys, Acta Mater., 2008, 56(6), p 1196–1208

    Article  Google Scholar 

  34. T. Steiner and E.J. Mittemeijer, Alloying Element Nitride Development in Ferritic Fe-based Materials Upon Nitriding: A Review, J. Mater. Eng. Perform., 2016, 25(6), p 2091–2102

    Article  Google Scholar 

  35. M. Sennour, P.H. Jouneau, and C. Esnouf, TEM and EBSD Investigation of Continuous and Discontinuous Precipitation of CrN in Nitrided Pure Fe-Cr Alloys, J. Mater. Sci., 2004, 9, p 4521–4531

    Article  Google Scholar 

  36. O.T. İnal and C.V. Robino, Structural Characterization of Some ion Nitrided Steels, Thin Solid Films, 1982, 95, p 195–207

    Article  Google Scholar 

  37. D. Buchkov, V. Toshkov, Ion Nitriding, Technika, 1990, UDC 621.785.5, Sofia, Bulgaria.

Download references

Acknowledgments

This work was supported by Grant VEGA1/0117/15 from the Ministry of Education, Science, Research and Sport of the Slovak Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Zdravecká.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdravecká, E., Slota, J., Solfronk, P. et al. Evaluation of the Effect of Different Plasma-Nitriding Parameters on the Properties of Low-Alloy Steel. J. of Materi Eng and Perform 26, 3588–3596 (2017). https://doi.org/10.1007/s11665-017-2787-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2787-3

Keywords

Navigation