Skip to main content
Log in

Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample’s surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Blawert and P. Bala Srinivasan, 6-Plasma electrolytic oxidation treatment of magnesium alloys, Surface Engineering of Light Alloys, H. Dong, Ed., Woodhead Publishing, Cambridge, 2010, p 155–183

    Chapter  Google Scholar 

  2. A. Fekry, Electrochemical Corrosion Behavior of Magnesium Alloys in Biological Solutions, INTECH Open Access Publisher, Croatia, 2011

    Book  Google Scholar 

  3. M. Salahshoor and Y. Guo, Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Process. Corros. Perform. Mater., 2012, 5(1), p 135–155

    Google Scholar 

  4. T.S.N. Sankara Narayanan, I.S. Park, and M.H. Lee, Strategies to Improve the Corrosion Resistance of Microarc Oxidation (MAO) Coated Magnesium Alloys for Degradable Implants: Prospects and Challenges, Prog. Mater. Sci., 2014, 60, p 1–71

    Article  Google Scholar 

  5. L. Zhang, J. Zhang, C.-F. Chen, and Y. Gu, Advances in Microarc Oxidation Coated AZ31 Mg Alloys for Biomedical Applications, Corros. Sci., 2015, 91, p 7–28

    Article  Google Scholar 

  6. R. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert, Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater., 2008, 10(8), p B3–B14

    Article  Google Scholar 

  7. D. Persaud-Sharma and A. McGoron, Biodegradable Magnesium Alloys: A Review of Material Development and Applications, J. Biomim. Biomater. Tissue Eng., 2012, 12, p 25–39

    Article  Google Scholar 

  8. F. Zhang, Z.-G. Liu, R.-C. Zeng, S.-Q. Li, H.-Z. Cui, L. Song, and E.-H. Han, Corrosion Resistance of Mg–Al-LDH Coating on Magnesium Alloy AZ31, Surf. Coat. Technol., 2014, 258, p 1152–1158

    Article  Google Scholar 

  9. E.S. Bogya, Z. Károly, and R. Barabás, Atmospheric Plasma Sprayed Silica–Hydroxyapatite Coatings on Magnesium Alloy Substrates, Ceram. Int., 2015, 41(4), p 6005–6012

    Article  Google Scholar 

  10. S. Wang, Y. Xia, L. Liu, and N. Si, Preparation and Performance of MAO Coatings Obtained on AZ91D Mg Alloy Under Unipolar and Bipolar Modes in a Novel Dual Electrolyte, Ceramics International, 2014, 40(1, Part A), p 93–99

    Article  Google Scholar 

  11. H. Zhao, S. Cai, S. Niu, R. Zhang, X. Wu, G. Xu, and Z. Ding, The influence of alkali pretreatments of AZ31 magnesium alloys on bonding of bioglass–ceramic coatings and corrosion resistance for biomedical applications, Ceramics International, 2015, 41(3, Part B), p 4590–4600

    Article  Google Scholar 

  12. A. Zomorodian, M.P. Garcia, T. Moura e Silva, J.C.S. Fernandes, M.H. Fernandes, and M.F. Montemor, Corrosion Resistance of a Composite Polymeric Coating Applied on Biodegradable AZ31 Magnesium Alloy, Acta Biomater., 2013, 9(10), p 8660–8670

    Article  Google Scholar 

  13. R. Zeng, Z. Lan, L. Kong, Y. Huang, and H. Cui, Characterization of Calcium-Modified Zinc Phosphate Conversion Coatings and their Influences on Corrosion Resistance of AZ31 Alloy, Surf. Coat. Technol., 2011, 205(11), p 3347–3355

    Article  Google Scholar 

  14. G. Rapheal, S. Kumar, N. Scharnagl, and C. Blawert, Effect of Current Density on the Microstructure and Corrosion Properties of Plasma Electrolytic Oxidation (PEO) Coatings on AM50 Mg Alloy Produced in an Electrolyte Containing Clay Additives, Surf. Coat. Technol., 2016, 289, p 150–164

    Article  Google Scholar 

  15. W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, and S.-Z. Yang, Characterisation of Ceramic Coatings Produced by Plasma Electrolytic Oxidation of Aluminum Alloy, Mater. Sci. Eng. A, 2007, 447(1–2), p 158–162

    Article  Google Scholar 

  16. V. Raj and M. Mubarak Ali, Formation of Ceramic Alumina Nanocomposite Coatings on Aluminum for Enhanced Corrosion Resistance, J. Mater. Process. Technol., 2009, 209(12–13), p 5341–5352

    Article  Google Scholar 

  17. J. Martin, A. Melhem, I. Shchedrina, T. Duchanoy, A. Nominé, G. Henrion, T. Czerwiec, and T. Belmonte, Effects of Electrical Parameters on Plasma Electrolytic Oxidation of Aluminum, Surf. Coat. Technol., 2013, 221, p 70–76

    Article  Google Scholar 

  18. S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin, M.V. Nistratova, A. Yerokhin, and A. Matthews, PEO Coatings Obtained on a Mg–Mn Type Alloy Under Unipolar and Bipolar Modes in Silicate-Containing Electrolytes, Surf. Coat. Technol., 2010, 204(14), p 2316–2322

    Article  Google Scholar 

  19. J. Liang, L. Hu, and J. Hao, Characterization of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Silicate and Phosphate Electrolytes, Appl. Surf. Sci., 2007, 253(10), p 4490–4496

    Article  Google Scholar 

  20. J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, and W. Dietzel, Electrochemical Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate-Based Electrolytes, Electrochim. Acta, 2009, 54(14), p 3842–3850

    Article  Google Scholar 

  21. D. Sreekanth and N. Rameshbabu, Development and Characterization of MgO/Hydroxyapatite Composite Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation Coupled with Electrophoretic Deposition, Mater. Lett., 2012, 68, p 439–442

    Article  Google Scholar 

  22. X. Lin, X. Wang, L. Tan, P. Wan, X. Yu, Q. Li, and K. Yang, Effect of Preparation Parameters on the Properties of Hydroxyapatite Containing Micro-arc Oxidation Coating on Biodegradable ZK60 Magnesium Alloy, Ceram. Int., 2014, 40(7, Part A), p 10043–10051

    Article  Google Scholar 

  23. P. Tian, X. Liu, and C. Ding, In Vitro Degradation Behavior and Cytocompatibility of Biodegradable AZ31 Alloy with PEO/HT Composite Coating, Colloids Surf. B Biointerfaces, 2015, 128, p 44–54

    Article  Google Scholar 

  24. P. Whiteside, E. Matykina, J.E. Gough, P. Skeldon, and G.E. Thompson, In Vitro Evaluation of Cell Proliferation and Collagen Synthesis on Titanium Following Plasma Electrolytic Oxidation, J. Biomed. Mater. Res. Part A, 2010, 94A(1), p 38–46

    Article  Google Scholar 

  25. M. Mohedano, R. Guzman, R. Arrabal, J.L. López Lacomba, and E. Matykina, Bioactive Plasma Electrolytic Oxidation Coatings—The Role of the Composition, Microstructure, and Electrochemical Stability, J. Biomed. Mater. Res. Part B Appl. Biomater., 2013, 101(8), p 1524–1537

    Article  Google Scholar 

  26. P. Bala Srinivasan, J. Liang, R.G. Balajeee, C. Blawert, M. Störmer, and W. Dietzel, Effect of Pulse Frequency on the Microstructure, Phase Composition and Corrosion Performance of a phosphate-Based Plasma Electrolytic Oxidation Coated AM50 Magnesium Alloy, Appl. Surf. Sci., 2010, 256(12), p 3928–3935

    Article  Google Scholar 

  27. L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., 1991, 74(7), p 1487–1510

    Article  Google Scholar 

  28. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122(2–3), p 73–93

    Article  Google Scholar 

  29. S. Durdu and M. Usta, The Tribological Properties of Bioceramic Coatings Produced on Ti6Al4V Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2014, 40(2), p 3627–3635

    Article  Google Scholar 

  30. S. Durdu, M. Usta, and A.S. Berkem, Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation, Surf. Coat. Technol., 2016, 301, p 85–93

    Article  Google Scholar 

  31. X. Zhou, G.E. Thompson, P. Skeldon, G.C. Wood, K. Shimizu, and H. Habazaki, Film Formation and Detachment During Anodizing of Al–Mg Alloys, Corros. Sci., 1999, 41(8), p 1599–1613

    Article  Google Scholar 

  32. H. Hornberger, S. Virtanen, and A.R. Boccaccini, Biomedical Coatings on Magnesium Alloys—A Review, Acta Biomater., 2012, 8(7), p 2442–2455

    Article  Google Scholar 

  33. H. Duan, C. Yan, and F. Wang, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52(11), p 3785–3793

    Article  Google Scholar 

  34. R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, and R.L. Jones, Corrosion, Erosion, and Erosion–Corrosion Performance of Plasma Electrolytic Oxidation (PEO) Deposited Al2O3 Coatings, Surf. Coat. Technol., 2005, 199(2–3), p 158–167

    Article  Google Scholar 

  35. W.-H. Song, Y.-K. Jun, Y. Han, and S.-H. Hong, Biomimetic Apatite Coatings on Micro-Arc Oxidized Titania, Biomaterials, 2004, 25(17), p 3341–3349

    Article  Google Scholar 

  36. Y. Zhang, C. Yan, F. Wang, and W. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47(11), p 2816–2831

    Article  Google Scholar 

  37. M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, Preparation of Ceramic Coating on Ti Substrate by Plasma Electrolytic Oxidation in Different Electrolytes and Evaluation of its Corrosion Resistance: Part II, Appl. Surf. Sci., 2012, 258(7), p 2416–2423

    Article  Google Scholar 

  38. D. Mareci, G. Bolat, J. Izquierdo, C. Crimu, C. Munteanu, I. Antoniac, and R.M. Souto, Electrochemical Characteristics of Bioresorbable Binary MgCa Alloys in Ringer’s Solution: Revealing the Impact of Local pH Distributions During In-Vitro Dissolution, Mater. Sci. Eng. C, 2016, 60, p 402–410

    Article  Google Scholar 

  39. A.D. King, N. Birbilis, and J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochim. Acta, 2014, 121, p 394–406

    Article  Google Scholar 

  40. F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006, 27(7), p 1013–1018

    Article  Google Scholar 

  41. Y. Gao, A. Yerokhin, E. Parfenov, and A. Matthews, Application of Voltage Pulse Transient Analysis during Plasma Electrolytic Oxidation for Assessment of Characteristics and Corrosion Behaviour of Ca- and P-containing Coatings on Magnesium, Electrochim. Acta, 2014, 149, p 218–230

    Article  Google Scholar 

  42. E. Krasicka-Cydzik, Gel-Like Layer Development During Formation of Thin Anodic Films on Titanium in Phosphoric Acid Solutions, Corros. Sci., 2004, 46(10), p 2487–2502

    Article  Google Scholar 

  43. M. Jamesh, S. Kumar, and T.S.N. Sankara, Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21 Mg Alloy in Ringer’s Solution—Long Term Evaluation by EIS, Corros. Sci., 2011, 53(2), p 645–654

    Article  Google Scholar 

  44. R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G.E. Thompson, Corrosion Resistance of WE43 and AZ91D Magnesium Alloys with Phosphate PEO Coatings, Corros. Sci., 2008, 50(6), p 1744–1752

    Article  Google Scholar 

  45. D.J. Mills, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists: By W. Stephen Tait, published by PairODocs Publications, Racine, WI, USA, Progress in Organic Coatings, 26(1), 73–74 (1995)

  46. X. Lu, C. Blawert, Y. Huang, H. Ovri, M.L. Zheludkevich, and K.U. Kainer, Plasma Electrolytic Oxidation Coatings on Mg Alloy with Addition of SiO2 Particles, Electrochim. Acta, 2016, 187, p 20–33

    Article  Google Scholar 

  47. W. Zhang, B. Tian, K.-Q. Du, H.-X. Zhang, and F.-H. Wang, Preparation and Corrosion Performance of PEO Coating with Low Porosity on Magnesium Alloy AZ91D in Acidic KF System, Int. J. Electrochem. Sci., 2011, 6, p 5228–5248

    Google Scholar 

  48. Y. Gu, C.-F. Chen, S. Bandopadhyay, C. Ning, Y. Zhang, and Y. Guo, Corrosion Mechanism and Model of Pulsed DC Microarc Oxidation Treated AZ31 Alloy in Simulated Body Fluid, Appl. Surf. Sci., 2012, 258(16), p 6116–6126

    Article  Google Scholar 

  49. D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, Effect of Various Additives on Morphology and Corrosion Behavior of Ceramic Coatings Developed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation, Ceram. Int., 2012, 38(6), p 4607–4615

    Article  Google Scholar 

  50. L. Guo-Hua, C. Huan, W. Xing-Quan, P. Hua, Z. Gu-Ling, Z. Bin, L. Heon-Ju, and Y. Si-Ze, Characteristics of Sealed Plasma Electrolytic Oxidation Coatings with electrochemical Impedance Spectroscopy, Chin. Phys. B, 2010, 19(8), p 085202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ziyaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyaei, E., Atapour, M., Edris, H. et al. Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive. J. of Materi Eng and Perform 26, 3204–3215 (2017). https://doi.org/10.1007/s11665-017-2765-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2765-9

Keywords

Navigation