Skip to main content
Log in

Microstructure and Mechanical Properties of Laser Solid Formed Ti-6Al-4V Alloy Under Dynamic Shear Loading

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To investigate the mechanical properties of the Ti-6Al-4V alloy fabricated by laser solid forming technology, both static and dynamic shear tests were conducted on hat-shaped specimens by a servohydraulic testing machine and an enhanced split Hopkinson pressure bar system, over a temperature range of 173-573 K. The microstructure of both the original and deformed specimens was characterized by optical microscopy and scanning electron microscopy. The results show that: (1) the anisotropy of shear properties is not significant regardless of the visible stratification and the prior-β grains that grow epitaxially along the depositing direction; (2) the ultimate shear strength of this material is lower than that of those Ti-6Al-4V alloys fabricated by forging and extrusion; (3) the adiabatic shear bands of approximately 25.6-36.4 μm in width can develop at all selected temperatures during the dynamic shear deformation; and (4) the observed microstructure and measured microhardness indicate that the grains become refined in adiabatic shear band. Estimation of the temperature rise shows that the temperature in shear band exceeds the recrystallization temperature. The process of rotational dynamic recrystallization is considered to be the cause of the grain refinement in shear band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.L. Griffith, L.D. Harwell, and J.A. Romero, Multi-Material Processing by LENS, Proceedings of the Solid Freeform Fabrication Symposium, Univ. Tex., 1997, 1997, p 387–393

    Google Scholar 

  2. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, M. Essien, J. Brooks, C.V. Robino, J.E. Smugeresky, W.H. Hofmeister, M.J. Wert, and D.V. Nelson, Understanding Thermal Behavior in the LENS Process, Mater. Des., 1999, 20(2), p 107–113

    Article  Google Scholar 

  3. P.A. Kobryn, E.H. Moore, and S.L. Semiatin, The Effect of Laser Power and Traverse Speed on Microstructure, Porosity, and Build Height in Laser-Deposited Ti-6Al-4V, Scr. Mater., 2000, 43(4), p 299–305

    Article  Google Scholar 

  4. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, Thermal Process Maps for Predicting Solidification Microstructure in Laser Fabrication of Thin-Wall Structures, J. Mater. Process. Technol., 2006, 178(1), p 135–142

    Article  Google Scholar 

  5. S. Zhang, X. Lin, J. Chen, and W. Huang, Effect of Solution Temperature and Cooling Rate on Microstructure and Mechanical Properties of Laser Solid Forming Ti-6Al-4V Alloy, Chin. Opt. Lett., 2009, 7(6), p 498–501

    Article  Google Scholar 

  6. P.H. Li, W.G. Guo, W.D. Huang, Y. Su, X. Lin, and K.B. Yuan, Thermomechanical Response of 3D Laser-Deposited Ti–6Al–4V Alloy Over a Wide Range of Strain Rates and Temperatures, Mater. Sci. Eng. A, 2015, 647, p 34–42

    Article  Google Scholar 

  7. J. Peirs, P. Verleysen, J. Degrieck, and F. Coghe, The Use of Hat-Shaped Specimens to Study the High Strain Rate Shear Behaviour of Ti–6Al–4V, Int. J. Impact Eng., 2010, 37(6), p 703–714

    Article  Google Scholar 

  8. J. Peirs, P. Verleysen, J. Degrieck, and F. Coghe, Novel Technique for Static and Dynamic Shear Testing of Ti6Al4V Sheet, Exp. Mech., 2012, 52(7), p 729–741

    Article  Google Scholar 

  9. J. Chen, R. Zhang, Q. Zhang, J. Yang, and W. Huang, Relationship Among Microstructure, Defects and Performance of Ti60 Titanium Alloy Fabricated by Laser Solid Forming, Rare Met. Mater. Eng., 2014, 43(3), p 548–552

    Article  Google Scholar 

  10. J.J. Wang, W.G. Guo, J. Guo, Z.A. Wang, and S.L. Lu, The Effects of Stress Triaxiality, Temperature and Strain Rate on the Fracture Characteristics of a Nickel-Base Superalloy, J. Mater. Eng. Perform., 2016, 25, p 2043–2052

    Article  Google Scholar 

  11. J.J. Wang, W.G. Guo, X.S. Gao, and J. Su, The Third-Type of Strain Aging and the Constitutive Modeling of a Q235B Steel Over a Wide Range of Temperatures and Strain Rates, Int. J. Plast., 2015, 65, p 85–107

    Article  Google Scholar 

  12. S. Nemat-Nasser and J.B. Isaacs, Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates with Application to Ta and Ta-W Alloys, Acta Mater., 1997, 45(3), p 907–919

    Article  Google Scholar 

  13. S. Nemat-Nasser and W.G. Guo, Thermomechanical Response of DH-36 Structural Steel Over a Wide Range of Strain Rates and Temperatures, Mech. Mater., 2003, 35(11), p 1023–1047

    Article  Google Scholar 

  14. M.A. Meyers, K.P. Staudhammer, and L.E. Murr, Ed., Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, Marcel Dekker, New York, NY, 1986, p 657–674

    Google Scholar 

  15. R. Culver, Thermal Instability Strain in Dynamic Plastic Deformation, Metallurgical Effects at High Strain Rates, Springer US, Berlin, 1973, p 519–530

    Book  Google Scholar 

  16. X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, and L.E. Murr, Comparison of the Microstructures and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting and Electron Beam Melting, Mater. Des., 2016, 95, p 21–31

    Article  Google Scholar 

  17. X. Lin, T.M. Yue, H.O. Yang, and W.D. Huang, Solidification Behavior and the Evolution of Phase in Laser Rapid Forming of Graded Ti6Al4V-Rene88DT Alloy, Metall. Mater. Trans. A, 2007, 38(1), p 127–137

    Article  Google Scholar 

  18. T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A, 2011, 42(10), p 3190–3199

    Article  Google Scholar 

  19. X. Liu, C. Tan, J. Zhang, F. Wang, and H. Cai, Correlation of Adiabatic Shearing Behavior with Fracture in Ti-6Al-4V Alloys with Different Microstructures, Int. J. Impact Eng., 2009, 36(9), p 1143–1149

    Article  Google Scholar 

  20. Q. Xue, M.A. Meyers, and V.F. Nesterenko, Self-Organization of Shear Bands in Titanium and Ti-6Al-4V Alloy, Acta Mater., 2002, 50(3), p 575–596

    Article  Google Scholar 

  21. Y. Yang, X.M. Li, X.L. Tong, Q.M. Zhang, and C.Y. Xu, Effects of Microstructure on the Adiabatic Shearing Behaviors of Titanium Alloy, Mater. Sci. Eng. A, 2011, 528(7), p 3130–3133

    Article  Google Scholar 

  22. W.S. Lee, C.F. Lin, T.H. Chen, and H.H. Hwang, Correlation of Dynamic Impact Properties with Adiabatic Shear Banding Behaviour in Ti-15Mo-5Zr-3Al Alloy, Mater. Sci. Eng. A, 2008, 475(1), p 172–184

    Article  Google Scholar 

  23. D. Yang, Y. An, P. Cizek, and P. Hodgson, Development of Adiabatic Shear Band in Cold-Rolled Titanium, Mater. Sci. Eng. A, 2011, 528(12), p 3990–3997

    Article  Google Scholar 

  24. F. Yuan, P. Jiang, and X. Wu, Annealing Effect on the Evolution of Adiabatic Shear Band Under Dynamic Shear Loading in Ultra-Fine-Grained Iron, Int. J. Impact Eng., 2012, 50, p 1–8

    Article  Google Scholar 

  25. M.A. Meyers, G. Subhash, B.K. Kad, and L. Prasad, Evolution of Microstructure and Shear-Band Formation in α-hcp Titanium, Mech. Mater., 1994, 17(2), p 175–193

    Article  Google Scholar 

  26. H.A. Grebe, H.R. Pak, and M.A. Meyers, Adiabatic Shear Localization in Titanium and Ti-6 pct Al-4 pct V Alloy, Metall. Trans. A, 1985, 16(5), p 761–775

    Article  Google Scholar 

  27. R. Kapoor and S. Nemat-Nasser, Determination of Temperature Rise During High Strain Rate Deformation, Mech. Mater., 1998, 27(1), p 1–12

    Article  Google Scholar 

  28. ASM Committee on Titanium and Titanium Alloys, Metals Handbook, Vol 3, 9th ed., ASM International, Metals Park, OH, 1980

    Google Scholar 

  29. F.J. Zerilli and R.W. Armstrong, Shock Compression of Condensed Matter, AIP Conference Proceedings (No. 370). Seattle, WA, 1995, AIP, 1996, p 31–35

  30. J.A. Hines and K.S. Vecchio, Recrystallization Kinetics Within Adiabatic Shear Bands, Acta Mater., 1997, 45(2), p 635–649

    Article  Google Scholar 

  31. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, and T.R. McNelley, Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel, Acta Mater., 2003, 51(5), p 1307–1325

    Article  Google Scholar 

  32. S.N. Medyanik, W.K. Liu, and S. Li, On Criteria for Dynamic Adiabatic Shear Band Propagation, J. Mech. Phys. Solids, 2007, 55(7), p 1439–1461

    Article  Google Scholar 

  33. J. Peirs, W. Tirry, B. Amin-Ahmadi, F. Coghe, P. Verleysen, L. Rabet, and J. Degrieck, Microstructure of Adiabatic Shear Bands in Ti6Al4V, Mater. Charact., 2013, 75, p 79–92

    Article  Google Scholar 

  34. D. Rittel, P. Landau, and A. Venkert, Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure, Phys. Rev. Lett., 2008, 101(16), p p165501-1–p165501-4

    Article  Google Scholar 

  35. P. Landau, A. Venkert, and D. Rittel, Microstructural Aspects of Adiabatic Shear Failure in Annealed Ti6Al4V, Metall. Mater. Trans. A, 2010, 41(2), p 389–396

    Article  Google Scholar 

  36. S. Nemat-Nasser, J.B. Isaacs, and M. Liu, Microstructure of High-Strain, High-Strain-Rate Deformed Tantalum, Acta Mater., 1998, 46(4), p 1307–1325

    Article  Google Scholar 

  37. M.T. Perez-Prado, J.A. Hines, and K.S. Vecchio, Microstructural Evolution in Adiabatic Shear Bands in Ta and Ta-W Alloys, Acta Mater., 2001, 49(15), p 2905–2917

    Article  Google Scholar 

  38. B. Derby, The Dependence of Grain Size on Stress During Dynamic Recrystallization, Acta Metall. Mater., 1991, 39(5), p 955–962

    Article  Google Scholar 

  39. M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, Y.B. Xu, and Q. Xue, Observation and Modeling of Dynamic Recrystallization in High-Strain, High-Strain Rate Deformation of Metals, J. Phys. IV Fr., 2000, 10, p 9-51–9-56

    Article  Google Scholar 

  40. Q.L. Yong, J.G. Tian, and W. Yang, Physical Metallurgical Data of Titanium in Steel, J. Yunnan Polytech. Univ., 1999, 15(2), p 7–10

    Google Scholar 

  41. B.F. Wang, Z.L. Liu, X.Y. Wang, and Z.Z. Li, An EBSD Investigation on Deformation-Induced Shear Bands in a Low Nickel Austenitic Stainless Steel Under Controlled Shock-Loading Conditions, Mater. Sci. Eng. A, 2014, 610, p 301–308

    Article  Google Scholar 

  42. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev, Deformation Behavior and Plastic Instabilities of Ultrafine-Grained Titanium, Appl. Phys. Lett., 2001, 79(5), p 611–613

    Article  Google Scholar 

  43. Y.M. Wang, E. Ma, and M.W. Chen, Enhanced Tensile Ductility and Toughness in Nanostructured Cu, Appl. Phys. Lett., 2002, 80(13), p 2395–2397

    Article  Google Scholar 

  44. Y. Yang, F. Jiang, B.M. Zhou, X.M. Li, H.G. Zheng, and Q.M. Zhang, Microstructural Characterization and Evolution Mechanism of Adiabatic Shear Band in a Near beta-Ti Alloy, Mater. Sci. Eng. A, 2011, 528(6), p 2787–2794

    Article  Google Scholar 

  45. B. Wang, J. Li, J. Sun, X. Wang, and Z. Liu, Shear Localization and Its Related Microstructural Evolution in the Ultrafine Grained Titanium Processed by Multi-Axial Compression, Mater. Sci. Eng. A, 2014, 612, p 227–235

    Article  Google Scholar 

Download references

Acknowledgment

This research work was supported by the National Natural Science Foundation of China (Nos. 11572261 and 11372255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Guo Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Guo, WG., Su, Y. et al. Microstructure and Mechanical Properties of Laser Solid Formed Ti-6Al-4V Alloy Under Dynamic Shear Loading. J. of Materi Eng and Perform 26, 3121–3132 (2017). https://doi.org/10.1007/s11665-017-2748-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2748-x

Keywords

Navigation