Skip to main content

Modeling and Characterization of Cyclic Shape Memory Behaviors of the Binary Ni49.9Ti50.1 Material System

Abstract

In this work, we address two of the main challenges encountered in constitutive modeling of the thermomechanical behaviors of actuation-based shape memory alloys. Firstly, the complexity of behavior under cyclic thermomechanical loading is properly handled, particularly with regard to assessing the long-term dimensional stability. Secondly, we consider the marked differences in behavior distinguishing virgin-versus-trained SMA material. To this end, we utilize a set of experimental data comprehensive in scope to cover all the anticipated operational conditions for one and same SMA alloy, having a specific chemical composition with fixed heat treatment. More specifically, this includes twenty-four different tests from the recent SMA experimental literature for the Ni49.9Ti50.1 material having austenite finish temperature above 100 °C. Under all the different conditions investigated, the model results were found to be in very good agreement with the experimental measurements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, London, 1999

    Google Scholar 

  2. C. Lexcellent, Shape-Memory Alloys Handbook, Wiley, London, 2013

    Book  Google Scholar 

  3. J.M. Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 56, p 1078–1113

    Article  Google Scholar 

  4. K. Wada and Y. Liu, On the Two-Way Shape Memory Behavior in NiTi Alloy: An Experimental Analysis, Acta Mater., 2008, 56(13), p 3266–3277

    Article  Google Scholar 

  5. H.Y. Luo and E.W. Abel, A Comparison of Methods for the Training of NiTi Two-Way Shape Memory Alloy, Smart Mater. Struct., 2007, 16(6), p 2543–2549

    Article  Google Scholar 

  6. H. Funakubo, Shape Memory Alloys, Gordon and Breach Science Publisher, New York, 1987

    Google Scholar 

  7. J. Perkins and R.O. Sponholz, Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-Al Alloys, Metall. Trans. A, 1984, 15(2), p 313–321

    Article  Google Scholar 

  8. O. Benafan, S.A. Padula, II, R.D. Noebe, T.A. Sisneros, and R. Vaidyanathan, Role of B19′ Martensite Deformation in Stabilizing Two-Way Shape Memory Behavior in NiTi, J. Appl. Phys., 2012, 112(9), p 093510

    Article  Google Scholar 

  9. K.C. Atli, I. Karaman, R.D. Noebe, and D. Gaydosh, The Effect of Training on Two-Way Shape Memory Effect of Binary NiTi and NiTi Based Ternary High Temperature Shape Memory Alloys, Mater. Sci. Eng., A, 2013, 560, p 653–666

    Article  Google Scholar 

  10. Y. Liu and J. Van Humbeeck, Two-Way Shape Memory Effect Developed by Martensite Deformation in NiTi, Acta Mater., 1998, 47(1), p 199–209

    Article  Google Scholar 

  11. A. Ölander, An Electrochemical Investigation of Solid Cadmium-Gold Alloys, J. Am. Chem. Soc., 1932, 54(10), p 3819–3833

    Article  Google Scholar 

  12. L.C. Chang and T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals-The Gold-Cadmium Beta-Phase, Trans. Am. Inst. Min. Metall. Eng., 1951, 191(1), p 47–52

    Google Scholar 

  13. W.J. Buehler, J.V. Gilfrich, and R.C. Wiley, Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys Near Composition TiNi, J. Appl. Phys., 1963, 3(4), p 1475–1477

    Article  Google Scholar 

  14. S. Besseghini, E. Villa, and A. Tuissi, Ni-Ti-Hf Shape Memory Alloy: Effect of Aging and Thermal Cycling, Mater. Sci. Eng., A, 1999, 273, p 390–394

    Article  Google Scholar 

  15. C. Bouvet, S. Calloch, and C. Lexcellent, Mechanical Behavior of a Cu-Al-Be Shape Memory Alloy under Multiaxial Proportional and Nonproportional Loadings, J. Eng. Mater. Technol., 2002, 124(2), p 112–124

    Article  Google Scholar 

  16. C. Grabe and O.T. Bruhns, On the Viscous and Strain Rate Dependent Behavior of Polycrystalline NiTi, Int. J. Solids Struct., 2008, 45(7), p 1876–1895

    Article  Google Scholar 

  17. S.A. Padula, II, S. Qiu, D. Gaydosh, R.D. Noebe, G. Bigelow, A. Garg, and R. Vaidyanathan, Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi, Metall. Mater. Trans. A, 2012, 43(12), p 4610–4621

    Article  Google Scholar 

  18. T.A. Schroeder and C.M. Wayman, The Two-Way Shape Memory Effect and Other “Training” Phenomena in Cu-Zn Single Crystals, Scr. Metall., 1977, 11(3), p 225–230

    Article  Google Scholar 

  19. R. Stalmans, J. Van Humbeeck, and L. Delaey, Thermomechanical Cycling, Two Way Memory and Concomitant Effects in Cu-Zn-Al Alloys, Acta Metall. Mater., 1992, 40(3), p 501–511

    Article  Google Scholar 

  20. P.Y. Manach and D. Favier, Origin of the Two-Way Memory Effect in NiTi Shape Memory Alloys, Scr. Metall. Mater., 1993, 28(11), p 1417–1421

    Article  Google Scholar 

  21. X.L. Meng, Y.F. Zheng, W. Cai, and L.C. Zhao, Two-Way Shape Memory Effect of a TiNiHf High Temperature Shape Memory Alloy, J. Alloys Compd., 2004, 372(1), p 180–186

    Article  Google Scholar 

  22. M. Panico and L.C. Brinson, A Three-Dimensional Phenomenological Model for Martensite Reorientation in Shape Memory Alloys, J. Mech. Phys. Solids, 2007, 55(11), p 2491–2511

    Article  Google Scholar 

  23. J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, A 3-D Phenomenological Constitutive Model for Shape Memory Alloys under Multiaxial Loadings, Int. J. Plast, 2010, 26(7), p 976–991

    Article  Google Scholar 

  24. X. Gu, W. Zaki, C. Morin, Z. Moumni, and W. Zhang, Time Integration and Assessment of a Model for Shape Memory Alloys Considering Multiaxial Nonproportional Loading Cases, Int. J. Solids Struct., 2015, 54, p 82–99

    Article  Google Scholar 

  25. T.J. Lim and D.L. McDowell, Cyclic Thermomechanical Behavior of a Polycrystalline Pseudoelastic Shape Memory Alloy, J. Mech. Phys. Solids, 2002, 50(3), p 651–676

    Article  Google Scholar 

  26. X.D. Zhang, C.A. Rogers, and C. Liang, Modelling of the Two-Way Shape Memory Effect, J. Intell. Mater. Syst. Struct., 1997, 8(4), p 353–362

    Article  Google Scholar 

  27. C. Lexcellent, S. Leclercq, B. Gabry, and G. Bourbon, The Two Way Shape Memory Effect of Shape Memory Alloys: An Experimental Study and a Phenomenological Model, Int. J. Plast, 2000, 16(10), p 1155–1168

    Article  Google Scholar 

  28. ABAQUS, V. 6.13, Dassault systemes, Pawtucket, 2013

  29. O. Benafan, R.D. Noebe, S.A. Padula, A. Garg, B. Clausen, S. Vogel, and R. Vaidyanathan, Temperature Dependent Deformation of the B2 Austenite Phase of a NiTi Shape Memory Alloy, Int. J. Plast, 2013, 51, p 103–121

    Article  Google Scholar 

  30. S.A. Padula, II, D. Gaydosh, A. Saleeb, and B. Dhakal, Transients and Evolution in NiTi, Exp. Mech., 2014, 54(5), p 709–715

    Article  Google Scholar 

  31. M.A. Qidwai and D.C. Lagoudas, On Thermomechanics and Transformation Surfaces of Polycrystalline NiTi Shape Memory Alloy Material. Int. J. Plast, 2000, 16(10), p 1309–1343

    Article  Google Scholar 

  32. W. Zaki and Z. Moumni, A 3D Model of the Cyclic Thermomechanical Behavior of Shape Memory Alloys, J. Mech. Phys. Solids, 2007, 55(11), p 2427–2454

    Article  Google Scholar 

  33. D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive Model for the Numerical Analysis of Phase Transformation in Polycrystalline Shape Memory Alloys, Int. J. Plast, 2012, 32, p 155–183

    Article  Google Scholar 

  34. P. Sedlák, M. Frost, A. Kruisová, K. Hiřmanová, L. Heller, and P. Šittner, Simulations of Mechanical Response of Superelastic NiTi Helical Spring and its Relation to Fatigue Resistance, J. Mater. Eng. Perform., 2014, 23(7), p 2591–2598

    Article  Google Scholar 

  35. Q. Kan and G. Kang, Constitutive Model for Uniaxial Transformation Ratchetting of Super-Elastic NiTi Shape Memory Alloy at Room Temperature, Int. J. Plast, 2010, 26(3), p 441–465

    Article  Google Scholar 

  36. X.Q. Feng and Q. Sun, Shakedown Analysis of Shape Memory Alloy Structures, Int. J. Plast, 2007, 23(2), p 183–206

    Article  Google Scholar 

  37. P. Luig and O.T. Bruhns, On the Modeling of Shape Memory Alloys Using Tensorial Internal Variables, Mater. Sci. Eng., A, 2008, 481, p 379–383

    Article  Google Scholar 

  38. F. Auricchio, A. Reali, and U. Stefanelli, A Macroscopic 1D Model for Shape Memory Alloys Including Asymmetric Behaviors and Transformation Dependent Elastic Properties, Comput. Methods Appl. Mech. Eng., 2009, 198(17), p 1631–1637

    Article  Google Scholar 

  39. A.F. Saleeb, B. Dhakal, S.A. Padula, II, and D.J. Gaydosh, Calibration of SMA Material Model for the Prediction of the ‘Evolutionary’ load-Bias Behavior under Conditions of Extended Thermal Cycling, Smart Mater. Struct., 2013, 22(9), p 094017

    Article  Google Scholar 

  40. A.F. Saleeb, B. Dhakal, S.A. Padula, II, and D.J. Gaydosh, Calibration of a Three-Dimensional Multimechanism Shape Memory Alloy Material Model for the Prediction of the Cyclic “Attraction” Character in Binary NiTi Alloys, J. Intell. Mater. Syst. Struct., 2013, 24(1), p 70–88

    Article  Google Scholar 

  41. A.F. Saleeb, S.A. Padula, A. Kumar, and A. Multi-Axial, Multimechanism Based Constitutive Model for the Comprehensive Representation of the Evolutionary Response of SMAs under General Thermomechanical Loading Conditions, Int. J. Plast, 2011, 27(5), p 655–687

    Article  Google Scholar 

  42. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics, Vol III/3, Springer, New York, 1965

    Google Scholar 

  43. H. Tobushi, K. Okumura, M. Endo, and K. Takata, Stress-Induced Martensitic Transformation Behavior and Lateral Strain of TiNi Shape Memory Alloy, Proceeding of the Eleventh international conference on adaptive structures and technologies, Y. Matsuzaki, T. Ikeda, and V. Baburaj, Ed., Technomic Publishing, Lancaster, 2001, p 367–374

    Google Scholar 

  44. H. Funakubo, Shape Memory Alloys, translated from the Japanese by JB Kennedy, Gordon and Breach Science Publishers, Amsterdam, 1987

    Google Scholar 

  45. A.F. Saleeb, T.Y.P. Chang, and A.S. Gendy, Effective Modelling of Spatial Buckling of Beam Assemblages, Accounting for Warping Constraints and Rotation-Dependency of Moments, Int. J. Numer. Methods Eng., 1992, 33(3), p 469–502

    Article  Google Scholar 

  46. A.F. Saleeb, S.M. Arnold, M.G. Castelli, T.E. Wilt, and W. Graf, A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys, Int. J. Plast, 2001, 17(10), p 1305–1350

    Article  Google Scholar 

  47. A.F. Saleeb, B. Dhakal, S. Dilibal, J.S. Owusu-Danquah, and S.A. Padula, On the Modeling of the Thermo-Mechanical Responses of Four Different Classes of NiTi-Based Shape Memory Materials Using a General Multi-Mechanism Framework, Mech. Mater., 2015, 80, p 67–86

    Article  Google Scholar 

  48. X. Gao, A. Stebner, D.W. Brown, and L.C. Brinson, Neutron Diffraction Studies and Multivariant Simulations of Shape Memory Alloys: Concurrent Verification of Texture Development and Mechanical Response Predictions, Acta Mater., 2011, 59(15), p 5924–5937

    Article  Google Scholar 

  49. S. Manchiraju, D. Gaydosh, O. Benafan, R. Noebe, R. Vaidyanathan, and P.M. Anderson, Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi: Simulations vs. Experiment, Acta Mater., 2011, 59(13), p 5238–5249

    Article  Google Scholar 

  50. T.W. Duerig, K.N. Melton, D. Stöckel, and C.M. Wayman, Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, 1990

    Google Scholar 

  51. D.J. Hartl, J.H. Mabe, O. Benafan, A. Coda, B. Conduit, R. Padan, and B. Van Doren, Standardization of Shape Memory Alloy Test Methods Toward Certification of Aerospace Applications, Smart Mater. Struct., 2015, 24(8), p 082001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Saleeb.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleeb, A.F., Natsheh, S.H., Owusu-Danquah, J.S. et al. Modeling and Characterization of Cyclic Shape Memory Behaviors of the Binary Ni49.9Ti50.1 Material System. J. of Materi Eng and Perform 26, 2729–2741 (2017). https://doi.org/10.1007/s11665-017-2721-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2721-8

Keywords