Skip to main content

Advertisement

Log in

Effect of Cooling Rate on the Mechanical Strength of Carbon Fiber-Reinforced Thermoplastic Sheets in Press Forming

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The purpose of this study is to elucidate the effect of the cooling rate of the carbon fiber-reinforced thermoplastic (CFRTP) sheets on the mechanical property in the press forming within 1 min cycle time. In order to pay attention only to the compression stage after the deformation stage in press forming, a flat sheet of dimensions 200 mm × 100 mm × 3 mm was produced. It was fabricated by stacking 15 CFRTP sheets of 0.2-mm-thick plain woven fabric impregnated with PA6, preheating them to 280 °C and pressing them at 5 MPa using a die cooled from near the melting temperature of PA6 with various cooling rates. Cooling rate of −26 °C/s with pressure holding time (defined in this study as the period that the pressure sensor detects high pressure) of 7 s and that of −4.4 °C/s with pressure holding time of 18 s gave a flexural strength of 536 and 733 MPa, respectively. It was found that the cooling rate during pressure holding is related to the mechanical property of press-formed CFRTP part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Friedrich and A.A. Almajid, Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications, Appl. Compos. Mater., 2013, 20, p 107–128

    Article  Google Scholar 

  2. A.G. Gibson and J.-A. Månson, Impregnation Technology for Thermoplastic Matrix Composites, Compos. Manuf., 1992, 3, p 223–233

    Article  Google Scholar 

  3. N. Bernet, V. Michaud, P.E. Bourban, and J.-A.E. Månson, Commingled Yarn Composites for Rapid Processing of Complex Shapes, Compos. Part A Appl. Sci. Manuf., 2001, 32, p 1613–1626

    Article  Google Scholar 

  4. K. van Rijswijk and H.E.N. Bersee, Reactive Processing of Textile Fiber-Reinforced Thermoplastic Composites—An Overview, Compos. Part A Appl. Sci. Manuf., 2007, 38, p 666–681

    Article  Google Scholar 

  5. C. Hopmann, M. Hildebrandt, R. Bouffier, K. Fischer, Inline-impregnation—individualized production of thermoplastic continuous fiber reinforced composite parts, in Proceedings of SAMPE Baltimore 2015, Baltimore, 2015.

  6. W.J.B. Grouve and R. Akkerman, Multi-scale Effects in the Consolidation of Thermoplastic Laminates, Int. J. Mater. Form., 2009, 2, p 157–160

    Article  Google Scholar 

  7. S.T. Jespersen, M.D. Wakeman, V. Michaud, D. Cramer, and J.-A.E. Månson, Film Stacking Impregnation Model for a Novel Net Shape Thermoplastic Composite Preforming Process, Compos. Sci. Technol., 2008, 68, p 1822–1830

    Article  Google Scholar 

  8. D. Liu, Y. Zhu, J. Ding, X. Lin, and X. Fan, Experimental Investigation of Carbon Fiber Reinforced Poly(Phenylene Sulfide) Composites Prepared Using a Double-Belt Press, Compos. Part B Eng., 2015, 77, p 363–370

    Article  Google Scholar 

  9. M. Lu, L. Ye, and Y.W. Mai, Thermal De-consolidation of Thermoplastic Matrix Composites-II. “Migration” of Voids and “Re-consolidation”, Compos. Sci. Technol., 2004, 64, p 191–202

    Article  Google Scholar 

  10. M.D. Wakeman, P. Blanchard, J.-A.E. Månson, Void Evolution During Stamp-Forming of Thermoplastic Composites, in Proceedings of 15th International Congress Composite Materials, Durban, 2005

  11. M. Hou, L. Ye, H.J. Lee, and Y.W. Mai, Manufacture of a Carbon-Fabric-Reinforced Polyetherimide (CF/PEI) Composite Material, Compos. Sci. Technol., 1998, 58, p 181–190

    Article  Google Scholar 

  12. H. Lessard, G. Lebrun, A. Benkaddour, and X.T. Pham, Influence of Process Parameters on the Thermostamping of a [0/90]12 Carbon/Polyether Ether Ketone Laminate, Compos. Part A Appl. Sci. Manuf., 2015, 70, p 59–68

    Article  Google Scholar 

  13. C.M. O’Bradaigh and P.J. Mallon, Effect of Forming Temperature on the Properties of Polymeric Diaphragm Formed Thermoplastic Composites, Compos. Sci. Technol., 1989, 35, p 235–255

    Article  Google Scholar 

  14. K. Fujihara, Z.M. Huang, S. Ramakrishna, and H. Hamada, Influence of Processing Conditions on Bending Property of Continuous Carbon Fiber Reinforced PEEK Composites, Compos. Sci. Technol., 2004, 64, p 2525–2534

    Article  Google Scholar 

  15. M. Hou, L. Ye, and Y.W. Mai, Manufacturing Process and Mechanical Properties of Thermoplastic Composite Components, J. Mater. Process. Technol., 1997, 63, p 334–338

    Article  Google Scholar 

  16. J. Nowacki and M. Neitzel, Thermoforming of Reinforced Thermoplastic Stiffened Structure, Polym. Compos., 2000, 21, p 531–538

    Article  Google Scholar 

  17. A. Beehag and L. Ye, Role of Cooling Pressure on Interlaminar Fracture Properties of Commingled CF/PEEK Composites, Compos. Part A Appl. Sci. Manuf., 1996, 27, p 175–182

    Article  Google Scholar 

  18. L. Ye, K. Friedrich, J. Kästel, and Y.W. Mai, Consolidation of Unidirectional CF/PEEK Composites from Commingled Yarn Prepreg, Compos. Sci. Technol., 1995, 54, p 349–358

    Article  Google Scholar 

  19. S.S. Pesetskii, B. Jurkowski, Y.A. Olkhov, S.P. Bogdanovich, and V.N. Koval, Influence of a Cooling Rate on a Structure of PA6, Eur. Polym. J., 2005, 41, p 1380–1390

    Article  Google Scholar 

  20. C. Mayer, X. Wang, and M. Neitzel, Macro- and Micro-impregnation Phenomena in Continuous Manufacturing of Fabric Reinforced Thermoplastic Composites, Compos. Part A Appl. Sci. Manuf., 1998, 29, p 783–793

    Article  Google Scholar 

  21. T. Guglhoer, M. Korkisch, G.R.M. Sause, Influence of Carbon Fibers on the Crystallinity of Polyamide 6, in 20th International Congress on Composite Materials, Copenhagen, 2015

Download references

Acknowledgments

This study was supported by A-STEP of the Japan Science and Technology Agency. The author also gratefully acknowledges the work of Mr. Nogata and Mr. Watanabe of our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tatsuno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatsuno, D., Yoneyama, T., Kawamoto, K. et al. Effect of Cooling Rate on the Mechanical Strength of Carbon Fiber-Reinforced Thermoplastic Sheets in Press Forming. J. of Materi Eng and Perform 26, 3482–3488 (2017). https://doi.org/10.1007/s11665-017-2664-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2664-0

Keywords

Navigation