Hardness, Electrical Conductivity and Thermal Stability of Externally Oxidized Cu-Al2O3 Composite Processed by SPD

  • Deping Lu
  • Jiang Jiang
  • Lei Lu
  • Xianjin Liao
  • Konstantin M. Nesterov
  • Rinat K. Islamgaliev
  • Ruslan Z. Valiev
  • Keming Liu


Cu-Al2O3 composites prepared by external oxidation method were further enhanced by severe plastic deformation (SPD) processing, including equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) methods. The HV hardness and electrical conductivity of the samples before and after SPD processing were tested. Results revealed that ECAP samples (with an equivalent strain of about 5.34) showed a relative small increase in hardness, whereas a significant decrease in electrical conductivity. The HPT samples (with an equivalent strain of about 6.94) showed not only a much improved hardness but also a higher electrical conductivity. Thermal stability of the SPD-processed Cu-Al2O3 composites was tested, and the HPT samples maintained good HV hardness together with high electrical conductivity even at 600 °C. The combination of external oxidation method and HPT processing resulted in enhanced mechanical properties, good electrical conductivity, acceptable thermal stability, and much simplified oxidation process.


Cu-Al2O3 composite equal-channel angular pressing (ECAP) external oxidation high-pressure torsion (HPT) severe plastic deformation (SPD) 



This work is supported by the National Natural Science Foundation of China (51461018, 51561010, 51401096), the Key Program of Natural Science Foundation of Jiangxi Province (20133BAB20008; 20144ACB20013), the International Science and Technology Cooperation Project of Jiangxi Province (20151BDH80006), the Ministry of Education and Science of the Russian Federation (NSh-7996.2016.8). The author(s) acknowledge the Russian Ministry for Education and Science for funding through Contract No. 14.B25.31.0017 by June 28, 2013.


  1. 1.
    Y. Champion and Y. Brechet, Effect of Grain Size Reduction and Geometrical Confinement in Fine Grained Copper: Potential Applications as a Material for Reversible Electrical Contacts, Adv. Eng. Mater., 2010, 12(8), p 798–802CrossRefGoogle Scholar
  2. 2.
    K. Hanazaki, N. Shigeiri, and N. Tsuji, Change in Microstructures and Mechanical Properties During Deep Wire Drawing of Copper, Mater. Sci. Eng. A, 2010, 527(21–22), p 5699–5707CrossRefGoogle Scholar
  3. 3.
    N. Takata, S.H. Lee, and N. Tsuji, Ultrafine Grained Copper Alloy Sheets Having Both High Strength and High Electric Conductivity, Mater. Lett., 2009, 63(21), p 1757–1760CrossRefGoogle Scholar
  4. 4.
    R.Z. Valiev, M.Y. Murashkin, and I. Sabirov, A Nanostructural Design to Produce High-Strength Al Alloys with Enhanced Electrical Conductivity, Scr. Mater., 2014, 76, p 13–16CrossRefGoogle Scholar
  5. 5.
    K. Liu, D. Lu, H. Zhou, A. Atrens, Z. Chen, J. Zou, and S. Zeng, Influence of Ag Micro-Alloying on the Microstructure and Properties of Cu-7Cr In Situ Composite, J. Alloys Compd., 2010, 500(2), p L22–L25CrossRefGoogle Scholar
  6. 6.
    J.B. Liu, L. Zhang, A.P. Dong, L.T. Wang, Y.W. Zeng, and L. Meng, Effects of Cr and Zr Additions on the Microstructure and Properties of Cu-6 wt% Ag Alloys, Mater. Sci. Eng. A, 2012, 532, p 331–338CrossRefGoogle Scholar
  7. 7.
    S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, and Y. Waseda, Improvement in Strength and Electrical Conductivity of Cu-Ni-Si Alloys by Aging and Cold Rolling, J. Alloys Compd., 2006, 417(1–2), p 116–120CrossRefGoogle Scholar
  8. 8.
    Y. Ye, X. Yang, J. Wang, X. Zhang, Z. Zhang, and T. Sakai, Enhanced Strength and Electrical Conductivity of Cu-Zr-B Alloy by Double Deformation-Aging Process, J. Alloys Compd., 2014, 615, p 249–254CrossRefGoogle Scholar
  9. 9.
    Y. Sakai, K. Inoue, and H. Maeda, New High-Strength, High-Conductivity Cu-Ag Alloy Sheets, Acta Metall. Mater., 1995, 43(4), p 1517–1522CrossRefGoogle Scholar
  10. 10.
    V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng. A, 1995, 197(2), p 157–164CrossRefGoogle Scholar
  11. 11.
    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981CrossRefGoogle Scholar
  12. 12.
    V.M. Segal, Mechanics of Continuous Equal-Channel Angular Extrusion, J. Mater. Process. Technol., 2010, 210(3), p 542–549CrossRefGoogle Scholar
  13. 13.
    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann. Manuf. Technol., 2008, 57, p 716–735CrossRefGoogle Scholar
  14. 14.
    Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, 61(3), p 782–817CrossRefGoogle Scholar
  15. 15.
    A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater Sci., 2008, 53(6), p 893–979CrossRefGoogle Scholar
  16. 16.
    R.K. Islamgaliev, K.M. Nesterov, J. Bourgon, Y. Champion, and R.Z. Valiev, Nanostructured Cu-Cr Alloy with High Strength and Electrical Conductivity, J. Appl. Phys., 2014, 115, p 194301-1–194301-4CrossRefGoogle Scholar
  17. 17.
    R.K. Islamgaliev, W. Buchgraber, Y.R. Kolobov, N.M. Amirkhanov, A.V. Sergueeva, K.V. Ivanov, and G.P. Grabovetskaya, Deformation Behavior of Cu-Based Nanocomposite Processed by Severe Plastic Deformation, Mater. Sci. Eng. A, 2001, 319–321, p 872–876CrossRefGoogle Scholar
  18. 18.
    H.G. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov, and T.C. Lowe, Microstructural Evolution, Microhardness and Thermal Stability of HPT-Processed Cu, Mater. Sci. Eng. A, 2000, 290, p 128–138CrossRefGoogle Scholar
  19. 19.
    B.H. Tian, P. Liu, K.X. Song, Y. Li, Y. Liu, F.Z. Ren, and J.H. Su, Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion-Strengthened Copper Base Composite, Mater. Sci. Eng. A, 2006, 435–436, p 705–710CrossRefGoogle Scholar
  20. 20.
    N. Romčević, M. Gilić, I. Anžel, R. Rudolf, M. Mitrić, M. Romčević, B. Hadžić, D. Joksimović, M. Petrović Damjanović, and M. Kos, Determination of Microstructural Changes by Severely Plastically Deformed Copper-Aluminum Alloy: Optical Study, J. Min. Metall. Sect. B Metall., 2014, 50(1), p 61–68CrossRefGoogle Scholar
  21. 21.
    G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, Continuous Processing of Ultrafine Grained Al by ECAP–Conform, Mater. Sci. Eng. A, 2004, 382(1–2), p 30–34CrossRefGoogle Scholar
  22. 22.
    K. Edalati and Z. Horita, Continuous High-Pressure Torsion, J. Mater. Sci., 2010, 45(17), p 4578–4582CrossRefGoogle Scholar
  23. 23.
    X.H. Wang, S.H. Liang, P. Yang, and Z.K. Fan, Effect of Al2O3 Content on Electrical Breakdown Properties of Al2O3/Cu Composite, J. Mater. Eng. Perform., 2010, 19, p 1330–1336CrossRefGoogle Scholar
  24. 24.
    K. Oh-ishi, K. Edalati, H.S. Kim, K. Hono, and Z. Horita, High-Pressure Torsion for Enhanced Atomic Diffusion and Promoting Solid-State Reactions in the Aluminum-Copper System, Acta Mater., 2013, 61, p 3482–3489CrossRefGoogle Scholar
  25. 25.
    S.I. Hong and M.A. Hill, Microstructure and Conductivity of Cu-Nb Microcomposites Fabricated by the Bundling and Drawing Process, Scr. Mater., 2001, 44, p 2509–2515CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Deping Lu
    • 1
  • Jiang Jiang
    • 1
  • Lei Lu
    • 1
  • Xianjin Liao
    • 1
  • Konstantin M. Nesterov
    • 2
  • Rinat K. Islamgaliev
    • 2
  • Ruslan Z. Valiev
    • 2
  • Keming Liu
    • 3
  1. 1.Jiangxi Key Laboratory of Advanced Copper and Tungsten MaterialsJiangxi Academy of SciencesNanchangPeople’s Republic of China
  2. 2.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussia
  3. 3.Jiangxi Key Laboratory for Precision Actuation and ControlNanchang Institute of TechnologyNanchangPeople’s Republic of China

Personalised recommendations