Morphology, Structure, Microhardness and Corrosion Resistance of Ni-W Coating Annealed in Hydrogen and Argon Atmosphere

  • Qiongyu Zhou
  • Wei Xie
  • Yadong Zhang
  • Liang Qi
  • Xiaofen WangEmail author


In this paper, an amorphous Ni-W coating was electrodeposited on the low-carbon steel and then annealed in hydrogen and argon atmosphere. Their characterization was carried out using scanning electron microscopy and x-ray diffraction. The corrosion characterization was carried out using the potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy. The results show that microcracks inevitably exist on the surface of Ni-W coating when annealed at 750 °C or higher temperature. After annealing treatment, amorphous structure transforms to crystalline and some new phases are precipitated, which is significantly affected by the annealing temperature and atmosphere. The microhardness of annealed Ni-W coatings is much higher than that of as-deposited coating, while an adverse corrosion performance is observed for the annealed Ni-W coatings. The coating annealed in hydrogen at 500 °C shows a huge improvement in hardness and a fairly acceptable corrosion resistance compared with the as-deposited Ni-W coating.


annealing atmosphere corrosion resistance electrodeposition Ni-W coating 



This paper is financially supported by the National Natural Science Foundation of China (51504104), Natural Science Foundation of Jiangxi Province, China (20151BAB216012, 20161BAB206141).


  1. 1.
    S. Jiang, Y. Zhang, X. Zhu, D. Sun, M. Wang, and C. Zhao, Physical Mechanisms of Nanocrystallization of a Novel Ni-Based Alloy Under Uniaxial Compression at Cryogenic Temperature, Mater. Charact., 2016, 116, p 18–23CrossRefGoogle Scholar
  2. 2.
    Y. Sun, S. Xu, and A. Shan, Effects of Annealing on Microstructure and Mechanical Properties of Nano-Grained Ni-Based Alloy Produced by Severe Cold Rolling, Mater. Sci. Eng. A, 2015, 641, p 181–188CrossRefGoogle Scholar
  3. 3.
    M. Liu, J. Zheng, Y. Lu, Z. Li, Y. Zou, X. Yu, and X. Zhou, Investigation on Corrosion Behavior of Ni-Based Alloys in Molten Fluoride Salt Using Synchrotron Radiation Techniques, J. Nucl. Mater., 2013, 440(1), p 124–128CrossRefGoogle Scholar
  4. 4.
    X. Zhou and Y. Shen, A Novel Method Designed for Electrodeposition of Nanocrystalline Ni Coating and Its Corrosion Behaviors in Hank’s Solution, Appl. Surf. Sci., 2015, 324, p 677–690CrossRefGoogle Scholar
  5. 5.
    B. Szeptycka, A. Gajewska-Midzialek, and T. Babul, Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings, J. Mater. Eng. Perform., 2016, 440(1), p 1–5Google Scholar
  6. 6.
    N.A. Badarulzaman, A.A. Mohamad, S. Puwadaria, and Z.A. Ahmad, The Evaluation of Nickel Deposit Obtained via Watts Electrolyte at Ambient Temperature, J. Coat. Technol. Res., 2010, 7(6), p 815–820CrossRefGoogle Scholar
  7. 7.
    T. Yamasaki, High-Strength Nanocrystalline Ni-W Alloys Produced by Electrodeposition and Their Embrittlement Behaviors During Grain Growth, Scripta Mater., 2001, 44(8), p 1497–1502CrossRefGoogle Scholar
  8. 8.
    O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, and E. Gileadi, Electroplating of Amorphous Thin Films of Tungsten/Nickel Alloys, Langmuir, 2001, 17(26), p 8270–8275CrossRefGoogle Scholar
  9. 9.
    L.L. Luo, X. Li, and J.Y. Fei, Magnetic Properties of Ni-Fe Alloy Coatings Prepared by Alloying Ni/Fe Multilayer Films, Surf. Eng., 2015, 31(9), p 679–684CrossRefGoogle Scholar
  10. 10.
    P.Q. Dai, C. Zhang, J.C. Wen, H.C. Rao, and Q.T. Wang, Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys, J. Mater. Eng. Perform., 2016, 25(2), p 594–600CrossRefGoogle Scholar
  11. 11.
    F. Cai, C. Jiang, Z. Zhang, E. Muttini, P. Fu, Y. Zhao, and V. Ji, Fabrication and Characterization of Ni-Zr Composite Coatings Using Electrodepositing Technique, J. Alloy. Compd., 2015, 635, p 73–81CrossRefGoogle Scholar
  12. 12.
    B. Guo, Z. Wang, and H. Li, Study on the Friction and Wear Behavior of a TA15 Alloy and Its Ni-SiC Composite Coating, J. Mater. Eng. Perform., 2016, 25(5), p 1763–1772CrossRefGoogle Scholar
  13. 13.
    H. Zhou, N. Du, L. Zhu, J. Shang, Z. Qian, and X. Shen, Characteristics Investigation of Ni-Diamond Composite Electrodeposition, Electrochim. Acta, 2015, 151, p 157–167CrossRefGoogle Scholar
  14. 14.
    N.Y.C. Yang, T.J. Headley, J.J. Kelly, and J.M. Hruby, Metallurgy of High Strength Ni-Mn Microsystems Fabricated by Electrodeposition, Scripta Mater., 2004, 51(8), p 761–766CrossRefGoogle Scholar
  15. 15.
    S. Arai, A. Fujimori, M. Murai, and M. Endo, Excellent Solid Lubrication of Electrodeposited Nickel-Multiwalled Carbon Nanotube Composite Films, Mater. Lett., 2008, 62(20), p 3545–3548CrossRefGoogle Scholar
  16. 16.
    Y. Wang, Q. Zhou, K. Li, Q. Zhong, and Q.B. Bui, Preparation of Ni-W-SiO2 Nanocomposite Coating and Evaluation of Its Hardness and Corrosion Resistance, Ceram. Int., 2015, 41(1), p 79–84CrossRefGoogle Scholar
  17. 17.
    H. Alimadadi, M. Ahmadi, M. Aliofkhazraei, and S.R. Younesi, Corrosion Properties of Electrodeposited Nanocrystalline and Amorphous Patterned Ni-W Alloy, Mater. Des., 2009, 30(4), p 1356–1361CrossRefGoogle Scholar
  18. 18.
    N. Sunwang, P. Wangyao, and Y. Boonyongmaneerat, The Effects of Heat Treatments on Hardness and Wear Resistance in Ni-W Alloy Coatings, Surf. Coat. Technol., 2011, 206(6), p 1096–1101CrossRefGoogle Scholar
  19. 19.
    A.J. Detor and C.A. Schuh, Microstructural Evolution During the Heat Treatment of Nanocrystalline Alloys, J. Mater. Res., 2007, 22(11), p 3233–3248CrossRefGoogle Scholar
  20. 20.
    K.H. Hou, Y.F. Chang, S.M. Chang, and C.H. Chang, The Heat Treatment Effect on the Structure and Mechanical Properties of Electrodeposited Nano Grain size Ni-W Alloy Coatings, Thin Solid Films, 2010, 518(24), p 7535–7540CrossRefGoogle Scholar
  21. 21.
    P.D. Lima-Neto, A.N. Correia, R.A.C. Santana, R.P. Colares, E.B. Barros, P.N.S. Casciano, and G.L. Vaz, Morphological, Structural, Microhardness and Electrochemical Characterisations of Electrodeposited Cr and Ni-W Coatings, Electrochim. Acta, 2010, 55(6), p 2078–2086CrossRefGoogle Scholar
  22. 22.
    C. Borgia, T. Scharowsky, A. Furrer, C. Solenthaler, and R. Spolenak, A Combinatorial Study on the Influence of Elemental Composition and Heat Treatment on the Phase Composition, Microstructure and Mechanical Properties of Ni-W Alloy Thin Films, Acta Mater., 2011, 59(1), p 386–399CrossRefGoogle Scholar
  23. 23.
    A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The Role of Hydrogen in Hydrogen Embrittlement Fracture of Lath Martensitic Steel, Acta Mater., 2012, 60(13), p 5182–5189CrossRefGoogle Scholar
  24. 24.
    R. Juškėnas, I. Valsiūnas, V. Pakštas, and R. Giraitis, On the State of W in Electrodeposited Ni-W Alloys, Electrochim. Acta, 2009, 54(9), p 2616–2620CrossRefGoogle Scholar
  25. 25.
    R. Morales, F.J. Tavera, R.E. Aune, and S. Seetharaman, Hydrogen Reduction of Complex Oxides—A Novel Route Toward the Production of Nanograined Alloys and Intermetallics, Scand. J. Metall., 2005, 34(2), p 108–115CrossRefGoogle Scholar
  26. 26.
    Y.H. Yoo, S.H. Lee, J.G. Kim, J.S. Kim, and C. Lee, Effect of Heat Treatment on the Corrosion Resistance of Ni-Based and Cu-Based Amorphous Alloy Coatings, J. Alloys Compd., 2008, 461(1), p 304–311CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • Qiongyu Zhou
    • 1
    • 2
  • Wei Xie
    • 1
  • Yadong Zhang
    • 1
  • Liang Qi
    • 1
  • Xiaofen Wang
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouPeople’s Republic of China
  2. 2.Institute of Applied PhysicsJiangxi Academy of SciencesNanchangPeople’s Republic of China

Personalised recommendations