Skip to main content
Log in

Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.V. Patel, E.H. Jordan, S. Sridharan, and M. Gell, Cyclic Furnace Testing and Life Predictions of Thermal Barrier Coating Spallation Subject to a Step Change in Temperature or in Cycle Duration, Surf. Coat. Technol., 2015, 275, p 384–391

    Article  Google Scholar 

  2. M. Zhaia, D. Lia, Y. Zhao, X. Zhong, F. Shao, H. Zhao, C. Liu, and S. Tao, Comparative Study on Thermal Shock Behavior of Thick Thermal Barrier Coatings Fabricated with Nano-Based YSZ Suspension and Agglomerated Particles, Ceram. Int., 2016, 42, p 12172–12179

    Article  Google Scholar 

  3. J. Wu, H.B. Guo, L. Zhou, L. Wang, and S.K. Gong, Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings from Nanostructured YSZ, J. Therm. Spray Technol., 2010, 19, p 1186–1194

    Article  Google Scholar 

  4. R. Liu, S. Yuan, Z. Wang, Y. Zhao, M. Zhang, and L. Shi, Graded YSZ/Al2O3 Hot Corrosion Resistant Coating with Enhanced Thermal Shock Resistance, RSC Adv., 2013, 3, p 17034–17038

    Article  Google Scholar 

  5. X. Song, Z. Liu, T. Suhonen, T. Varis, L. Huang, X. Zheng, and Y. Zeng, Effect of Melting State on the Thermal Shock Resistance and Thermal Conductivity of APS ZrO2-7.5 wt.% Y2O3 Coatings, Surf. Coat. Technol., 2015, 270, p 132–138

    Article  Google Scholar 

  6. H. Jamali, R. Mozafarinia, R. Shoja Razavi, and R. Ahmadi-Pidani, Comparison of Thermal Shock Resistances of Plasma-Sprayed Nanostructured and Conventional Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2012, 38, p 6705–6712

    Article  Google Scholar 

  7. R. Ghasemin, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, The Influence of Laser Treatment on Thermal Shock Resistance of Plasma-Sprayed Nanostructured Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2014, 40, p 347–355

    Article  Google Scholar 

  8. C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2009, 18, p 223–230

    Article  Google Scholar 

  9. R. Eriksson, H. Brodin, S. Johansson, L. Östergren, and X.H. Li, Fractographic and Microstructural Study of Isothermally and Cyclically Heat Treated Thermal Barrier Coatings, Surf. Coat. Technol., 2014, 243, p 82–90

    Article  Google Scholar 

  10. N.M. Yanar, G.H. Meier, and F.S. Pettit, The Influence of Platinum on the Failure of EBPVD YSZ TBCs on NiCoCrAlY Bond Coats, Scr. Mater., 2002, 46, p 325–330

    Article  Google Scholar 

  11. S. Guo and Y. Kagawa, Isothermal and Cycle Properties of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings at 1150 and 1300 °C, Ceram. Int., 2007, 33, p 373–378

    Article  Google Scholar 

  12. T.A. Dobbins, R. Knight, and M.J. Mayo, HVOF Thermal Spray Deposited Y2O3-Stabilized ZrO2 Coatings for Thermal Barrier Applications, J. Therm. Spray Technol., 2003, 12, p 214–225

    Article  Google Scholar 

  13. J.R.V. Garcial and T. Goto, Thermal Barrier Coatings Produced by Chemical Vapor Deposition, Sci. Technol. Adv. Mater., 2003, 4, p 397–402

    Article  Google Scholar 

  14. X. Chen, Y. Zhao, X. Fan, Y. Liu, B. Zou, Y. Wang, H. Ma, and X. Cao, Thermal Cycling Failure of New LaMgAl11O19/YSZ Double Ceramic Top Coat Thermal Barrier Coating Systems, Surf. Coat. Technol., 2011, 205, p 3293–3300

    Article  Google Scholar 

  15. Y. Bai, Z.H. Han, H.Q. Li, C. Xu, Y.L. Xu, Z. Wang, C.H. Ding, and J.F. Yan, High Performance Nanostructured ZrO2 Based Thermal Barrier Coatings Deposited by High Efficiency Supersonic Plasma Spraying, Appl. Surf. Sci., 2011, 257, p 7210–7216

    Article  Google Scholar 

  16. E. Sanchez, E. Bannier, V. Cantavella, M.D. Salvador, E. Klyatskina, J.Grzonka Morgiel, and A.R. Boccaccini, Deposition of Al2O3-TiO2 Nanostructured Powders by Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2008, 17, p 329–337

    Article  Google Scholar 

  17. R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Improving the Thermal Shock Resistance of Plasma Sprayed CYSZ Thermal Barrier Coatings by Laser Surface Modification, Opt. Lasers Eng., 2012, 50, p 780–786

    Article  Google Scholar 

  18. Q. Cui, S.M. Seo, Y.S. Yoo, Z. Lu, and S.W. Myoung, Thermal Durability of Thermal Barrier Coatings with Bond Coat Composition in Cyclic Thermal Exposure, Surf. Coat. Technol., 2015, 284, p 69–74

    Article  Google Scholar 

  19. H. Dong, G.J. Yang, H.N. Cai, H. Ding, C.X. Li, and C.J. Li, The Influence of Temperature Gradient Across YSZ on Thermal Cyclic Lifetime of Plasma-Sprayed Thermal Barrier Coatings, Ceram. Int., 2015, 41, p 11046–11056

    Article  Google Scholar 

  20. M.R. Begley and H.N.G. Wadley, Delamination Resistance of Thermal Barrier Coatings Containing Embedded Ductile Layers, Acta Mater., 2012, 60, p 2497–2508

    Article  Google Scholar 

  21. X. Zhong, H. Zhao, C. Liu, L. Wang, and F. Shao, Improvement in Thermal Shock Resistance of Gadolinium Zirconate Coating by Addition of Nanostructured Yttria Partially-Stabilized Zirconia, Ceram. Int., 2015, 41, p 7318–7324

    Article  Google Scholar 

  22. J.H. Lee, P.C. Tsai, and C.L. Chang, Microstructure and Thermal Cyclic Performance of Laser Glazed Plasma-Sprayed Ceria-Yttria-Stabilized Zirconia Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202, p 5607–5612

    Article  Google Scholar 

  23. C. Ren, Y.D. He, and D.R. Wang, Cyclic Oxidation Behavior and Thermal Barrier Effect of YSZ-(Al2O3/YAG) Double-Layer TBCs Prepared by the Composite Sol-Gel Method, Surf. Coat. Technol., 2011, 206, p 1461–1468

    Article  Google Scholar 

  24. J.D. Kim and Y. Peng, Melt pool Shape and Dilution of Laser Cladding with Wire Feeding, J. Mater. Process. Technol., 2000, 104, p 284–293

    Article  Google Scholar 

  25. A. Afrasiabi, M. Saremi, and A. Kobayashi, A Comparative Study on Hot Corrosion Resistance of Three Types of Thermal Barrier Coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3, Mater. Sci. Eng. A, 2008, 478, p 264–269

    Article  Google Scholar 

  26. C. Batista, A. Portinha, R.M. Ribeiro, V. Teixeira, M.F. Costa, and C.R. Oliveira, Surface Laser-Glazing of Plasma-Sprayed Thermal Barrier Coatings, Appl. Surf. Sci., 2005, 9, p 247–313

    Google Scholar 

  27. C. Ren, Y.D. He, and D.R. Wang, Preparation and Characteristics of Three Layer YSZ-(YSZ/Al2O3)-YSZ TBCs, Appl. Surf. Sci., 2011, 257, p 6837–6842

    Article  Google Scholar 

  28. X.Q. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1–10

    Article  Google Scholar 

  29. G.M. Pharr, Measurement of Mechanical Properties by Ultra-Low Load Indentation, Mater. Sci. Eng., 1998, A253, p 151–159

    Article  Google Scholar 

  30. G. Di Girolamo, F. Marra, C. Blasi, E. Serra, and T. Valente, Microstructure, Mechanical Properties and Thermal Shock Resistance of Plasma Sprayed Nanostructured Zirconia Coatings, Ceram. Int., 2011, 37, p 2711–2717

    Article  Google Scholar 

  31. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Thermal Shock Behavior of 8YSZ and Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram. Int., 2012, 38, p 3595–3606

    Article  Google Scholar 

  32. X. Chen, Y. Zhang, X. Zhong, Z. Xu, J. Zhang, Y. Cheng, Y. Zhao, Y. Liu, X. Fan, Y. Wang, H. Ma, and X. Cao, Thermal Cycling Behaviors of the Plasma Sprayed Thermal Barrier Coatings of Hexaluminates with Magnetoplumbite Structure, J. Eur. Ceram. Soc., 2010, 30, p 1649–1657

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Baghshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimanipour, Z., Baghshahi, S. & Shoja-razavi, R. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding. J. of Materi Eng and Perform 26, 1890–1899 (2017). https://doi.org/10.1007/s11665-017-2591-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2591-0

Keywords

Navigation