Skip to main content

Advertisement

Log in

Mechanically Assisted Solid-State Mixing and Spark Plasma Sintering for Fabrication of Bulk Nanocomposite (WC/7(10Co/4Cr))-Based ZrO2 Systems

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mechanically induced solid-state mixing, using high-energy ball milling technique, was employed for preparing WC/7 wt.% (10Cr/4Cr) solid-solution powders. The solid-solution powders obtained after 50 h of milling were mechanically mixed for 50 h together with small weight fractions (0-7 wt.%) of (ZrO2 + 1.5 wt.% Y2O3) powders. The powders were then consolidated in vacuum under a uniaxial pressure of 30 MPa at 1250 °C, using spark plasma sintering. The consolidated bulk samples were nearly full dense and maintained their nanocrystalline structure after this consolidation step. The results showed that the consolidated samples over the entire range of ZrO2 concentrations (0–7 wt.%) had low values for Young’s modulus (297–318 GPa) due to their nanocrystalline structures. Moreover, the WC/7 wt.% (10Cr/4Cr)/7(ZrO2-1.5 mol.% Y2O3) showed excellent wear resistance, indexed by its low-value friction coefficient (~0.29).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.S. Benjamin, Mechanical Alloying, Sci. Am., 1976, 234, p 40–49

    Article  Google Scholar 

  2. C.C. Koch and Y.S. Cho, Nanocrystals by High Energy Ball Milling, Nanostruct. Mater., 1992, 1, p 207–212

    Article  Google Scholar 

  3. M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, 2nd ed., Elsevier Inc, Philadelphia, PA, 2015 (19103-2899)

    Google Scholar 

  4. M.S. El-Eskandarany, Mechanical Solid State Mixing for Synthesizing of SiCp/Al Nanocomposites, J. Alloys Comp., 1998, 279, p 263–271

    Article  Google Scholar 

  5. R. Md Raihanuzzaman, Z. Xie, S.J. Hong, and R. Ghomashchi, Powder Refinement, Consolidation and Mechanical Properties of Cemented Carbides—An Overview, Powder Technol., 2014, 261, p 1–13

    Article  Google Scholar 

  6. R. Md Raihanuzzaman, S.-T. Han, R. Ghomashchi, H.-S. Kim, and S.-J. Hong, Conventional Sintering of WC with Nano-Sized Co binder: Characterization and Mechanical Behavior, Int. J. Refract. Metal. Hard Mater., 2015, 53, p 2–6

    Article  Google Scholar 

  7. W. Su, Y. Sun, H. Wang, X. Zhang, and J. Ruan, Preparation and sintering of WC–Co composite powders for coarse grained WC–8Co hardmetals, Int. J. Refract. Metal. Hard Mater., 2014, 45, p 80–85

    Article  Google Scholar 

  8. C. Suryanarayana and N. Al-Aqeeli, Prog. Mater Sci., 2013, 58, p 383–410

    Article  Google Scholar 

  9. D. Zheng, X. Li, X. Ai, C. Yang, and Y. Li, WC–Si3N4 composites prepared by two-step spark plasma sintering, Int. J. Refract. Metals Hard Mater., 2015, 50, p 133–139

    Article  Google Scholar 

  10. H. Engqvist, G.A. Botton, N. Axe´n, and S. Hogmark, A study of grain boundaries in a binderless cemented carbide, Int. J. Refract. Metals Hard Mater., 1998, 16, p 309–313

    Article  Google Scholar 

  11. El-Eskandarany M. Sherif, Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature, J. Alloy Comp., 2000, 296, p 175–182

    Article  Google Scholar 

  12. M.S. El-Eskandarany, Top–down approach accompanied with mechanical solid-state mixing for producing nanocomposite WC/Al2O3 materials, Int. J. Nanopart., 2009, 2, p 14–22

    Google Scholar 

  13. N. Ünal, F. Kern, M.L. Öveçğlu, and R. Gadow, Influence of WC particles on the microstructural and mechanical properties of 3 mol% Y2O3 stabilized ZrO2 matrix composites produced by hot pressing, J. Eur. Ceram. Soc., 2011, 31, p 2267–2275

    Article  Google Scholar 

  14. S. Huang, K. Vanmeensel, O.V. Der Biest, and J. Vleugels, Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering, Front. Mater. Sci., 2011, 5, p 50–56

    Article  Google Scholar 

  15. Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM Standard D792-00. Vol 81.01. American Society for Testing and Materials. West Conshohocken. PA.

  16. M.B. Raviathul, V.C. Srivastava, and N.K. Mukhopadhyay, Effect of milling time on structural evolution and mechanical properties of garnet reinforced EN AW6082 composites, Metall. Mater. Trans. A, 2014, doi:10.1007/s11661-014-2685-3

    Google Scholar 

  17. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements, J. Am. Ceram. Soc., 1981, 64, p 533–540

    Article  Google Scholar 

  18. M.T. Laugier, Surface toughening of ceramics, J. Mater. Sci. Lett., 1986, 5, p 252

    Article  Google Scholar 

  19. M.T. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett., 1987, 6, p 355–356

    Article  Google Scholar 

  20. T. Venkateswaran, D. Sakar, and B. Basu, Tribological properties of WC–ZrO2 nanocomposites, J. Am. Ceram. Soc., 2005, 88, p 691–697

    Article  Google Scholar 

  21. B. Basu, J. Vleugels, and O.V. der Biest, Processing and mechanical properties of ZrO2–TiB2 composites, J. Eur. Ceram. Soc., 2005, 25, p 3629–3637

    Article  Google Scholar 

  22. R.C. Garvie, R.H. Hannink, and R.T. Pascoe, Ceramic steel?, Nature, 1975, 258, p 703–704

    Article  Google Scholar 

  23. H. Miyazaki, Yoshizawa Yu-ichi, and K. Hirao, Effect of the volume ratio of zirconia and alumina on the mechanical properties of fibrous zirconia/alumina bi-phase composites prepared by co-extrusion, J. Eur. Ceram. Soc., 2006, 26, p 3539–3546

    Article  Google Scholar 

Download references

Acknowledgments

Appreciation is extended to the Kuwait Government through the Kuwait Institute for Scientific Research for purchasing all of the equipment used in the present work, using the budget dedicated for the Project (P-KISR-06-04) led by the first author of Establishing Nanotechnology Center in KISR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sherif El-Eskandarany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Eskandarany, M.S., Al-Hazza, A. & Al-Hajji, L.A. Mechanically Assisted Solid-State Mixing and Spark Plasma Sintering for Fabrication of Bulk Nanocomposite (WC/7(10Co/4Cr))-Based ZrO2 Systems. J. of Materi Eng and Perform 26, 1540–1550 (2017). https://doi.org/10.1007/s11665-017-2580-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2580-3

Keywords

Navigation