Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

Abstract

Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310–486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420–1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140–320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    At the facility of Proto Manufacturing using a Proto AXRD Benchtop powder diffraction system.

References

  1. 1.

    M.K. Alam, J. Urbanic, S.M. Saqib, and A. Edrisy, Effect of Process Parameters On the Microstructural Evolutions of Laser Cladded 420 Martensitic Stainless Steel, Materials Science and Technology Conference Proceedings (MS&T15), October 48, Columbus, OH, USA, 2015, p 35–54

  2. 2.

    S.H. Baghjari and S.A.A. Akbari Mousavi, Effects of Pulsed Nd:YAG Laser Welding Parameters and Subsequent Post-weld Heat Treatment on Microstructure and Hardness of AISI, 420 Stainless Steel, Mater. Des., 2013, 43, p 1–9

    Article  Google Scholar 

  3. 3.

    J. Chen, S.H. Wang, and L. Xue, On the Development of Microstructures and Residual Stresses During Laser Cladding and Post-heat Treatments, J. Mater. Sci., 2012, 47(2), p 779–792

    Article  Google Scholar 

  4. 4.

    R. Vilar, Laser Cladding, J. Laser Appl., 1999, 11(2), p 64

    Article  Google Scholar 

  5. 5.

    J. Lippold and D. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, Wiley, New York, 2005, p 56–86

    Google Scholar 

  6. 6.

    J. Chen, L. Xue, and S. Wang, Microstructure Characterization of Laser-Consolidated AISI 420 Stainless Steel, Materials Science and Technology (MS&T) 2008, Pittsburgh, Pennsylvania, USA, p 1388–1396

  7. 7.

    M. Fenech, B. Mallia, M. Grech, and J.C. Betts, Post-deposition Heat Treatment of Co-deposited Cr3C2 and AISI, 410 Stainless Steel Using the Coaxial Laser Deposition Technique, J. Mater. Sci., 2013, 48(5), p 2224–2235

    Article  Google Scholar 

  8. 8.

    A. Guo and W. Kar, Microstructural Analysis and Performance Evalution in Laser Cladding of Stainless Steel on the Plain Carbon Steel, Elevated Temperature Coatings: Science and Technology lll, 1999, p 231–241

  9. 9.

    C. Köse and R. Kaçar, The Effect of Preheat and Post Weld Heat Treatment on the Laser Weldability of AISI, 420 Martensitic Stainless Steel, Mater. Des., 2014, 64, p 221–226

    Article  Google Scholar 

  10. 10.

    G. Telasang, J. Dutta Majumdar, N. Wasekar, G. Padmanabham, and I. Manna, Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI, H13 Tool Steel, Metall. Mater. Trans. A, 2015, 46(5), p 2309–2321

    Article  Google Scholar 

  11. 11.

    J. Grum and M. Žnidaršič, Microstructure, Microhardness, and Residual Stress Analysis of Laser Surface Cladding of Low-Carbon Steel, Mater. Manuf. Process., 2004, 19(2), p 243–258

    Article  Google Scholar 

  12. 12.

    J.-Y. Chen, K. Conlon, L. Xue, and R. Rogge, Experimental Study of Residual Stresses in Laser Clad AISI, P20 Tool Steel on Pre-hardened Wrought P20 Substrate, Mater. Sci. Eng. A, 2010, 527(27–28), p 7265–7273

    Article  Google Scholar 

  13. 13.

    P. Farahmand and R. Kovacevic, An Experimental-Numerical Investigation of Heat Distribution and Stress Field in Single- and Multi-track Laser Cladding by a High-Power Direct Diode Laser, Opt. Laser Technol., 2014, 63, p 154–168

    Article  Google Scholar 

  14. 14.

    J. Katsuyama, M. Udagawa, H. Nishikawa, and K. Onizawa, Evaluation of Weld Residual Stress Near the Cladding and J-Weld in Reactor Pressure Vessel Head for the Assessment of PWSCC Behavior, E J. Adv. Maint., 2010, 2, p 50–64

    Google Scholar 

  15. 15.

    K. Aggarwal, Investigation of Laser Clad Bead Geometry to Process Parameter Settings for Effective Parameter Selection, Simulation, and Optimization-MASc Thesis, University of Windsor, 2014

  16. 16.

    R. Steiner, ASM Handbook Volume 1, Properties and Selection: Irons, Steels and High Performance Alloys, 10th ed. ASM International, 1993

  17. 17.

    J.F. Grubb, Martensitic Stainless Steels, Uhlig’s Corrosion Handbook, R.W. Revie, Ed., Wiley, Hoboken, 2000, p 667–676

    Google Scholar 

  18. 18.

    E. Weidmann, Struers Application Notes—Metallographic Preparation of Stainless Steel, Struers A/S, Copenhagen, 2005

    Google Scholar 

  19. 19.

    P.V. Yibin Xu, M. Yamazaki, National Institute for Materials Science (NIMS) AtomWork, Inorganic Materials Database for Exploring the Nature of Material-Jpn. J. Appl. Phys. 2011. http://crystdb.nims.go.jp/. Accessed 23 Dec 2015

  20. 20.

    ASTM Standard E915, Standard Test Method for Verifying the Alignment of X-ray Diffraction Instrumentation for Residual Stress Measurement, ASTM B. Stand. June 1996, vol. i, 2010, p 1–4

  21. 21.

    S.A. David, S.S. Babu, and J.M. Vitek, Welding: Solidificatio and Microstructure, JOM, J. Miner. Met. Mater. Soc., 2003. doi:10.1007/s11837-003-0134-7

  22. 22.

    Y.C. Lin and S.C. Chen, Effect of Residual Stress on Thermal Fatigue in a Type 420 Martensitic Stainless Steel Weldment, J. Mater. Process. Technol., 2003, 138(1–3), p 22–27

    Article  Google Scholar 

  23. 23.

    M.M.A. Khan, L. Romoli, M. Fiaschi, F. Sarri, and G. Dini, Experimental Investigation on Laser Beam Welding of Martensitic Stainless Steels in a Constrained Overlap Joint Configuration, J. Mater. Process. Technol., 2010, 210(10), p 1340–1353

    Article  Google Scholar 

  24. 24.

    R.S. Huang, L. Kang, and X. Ma, Microstructure and Phase Composition of a Low-Power YAG Laser-MAG Welded Stainless Steel Joint, J. Mater. Eng. Perform., 2008, 17(6), p 928–935

    Article  Google Scholar 

  25. 25.

    I. Hemmati, V. Ocelík, and J.T.M. De Hosson, The Effect of Cladding Speed on Phase Constitution and Properties of AISI, 431 Stainless Steel Laser Deposited Coatings, Surf. Coat. Technol., 2011, 205(21–22), p 5235–5239

    Article  Google Scholar 

  26. 26.

    S. Liang, H. Zhang, M. Xia, R. Chen, E. Han, and Z. Fan, Microstructure and Mechanical Properties of Melt-Conditioned High-Pressure Die-Cast Mg-Al-Ca Alloy, Trans. Nonferr. Met. Soc. China, 2010, 20(7), p 1205–1211

    Article  Google Scholar 

  27. 27.

    S. Da Sun, Q. Liu, M. Brandt, M. Janardhana, and G. Clark, Microstructure and Mechanical Properties of Laser Cladding Repair of AISI 4340 Steel, 28th International Congress of the Aeronautical Sciences (ICAS), 2012, Brisbane, Australia, no. i, p 1–9

  28. 28.

    M.M.A. Khan, L. Romoli, R. Ishak, M. Fiaschi, G. Dini, and M. De Sanctis, Experimental Investigation on Seam Geometry, Microstructure Evolution and Microhardness Profile of Laser Welded Martensitic Stainless Steels, Opt. Laser Technol., 2012, 44(5), p 1611–1619

    Article  Google Scholar 

  29. 29.

    H.J. Niu and I.T.H. Chang, Microstructural Evolution During Laser Cladding of M2 High-Speed Steel, Metall. Mater. Trans. A, 2000, 31(10), p 2615–2625

    Article  Google Scholar 

  30. 30.

    E. Folkhard, Welding Metallurgy of Stainless Steels, Springer, New York, 1988

    Google Scholar 

  31. 31.

    M.D.B. Mateša and I. Samardžić, The Influence of Heat Treatment on Delta Ferrite, Metalurgija, 2012, 51(2), p 229–232

    Google Scholar 

  32. 32.

    P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, and Y.Y. Li, Effect of Delta Ferrite on Impact Properties of Low Carbon 13Cr-4Ni Martensitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527(13–14), p 3210–3216

    Article  Google Scholar 

  33. 33.

    N. Lewis, M.J. Cieslak, and W.F. Savage, Microsegregation and Eutectic Ferrite-to-Austenite Transformation in Primary Austenite Solidified CF-8M Weld Metals, J. Mater. Sci., 1987, 22(8), p 2799–2810

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Ontario Centre of Excellence Collaborative Research program. The authors would like to thank the industry sponsor for the time and resources they have provided for this research project. The authors would like to acknowledge special help and support offered by the Proto Manufacturing Ltd for the residual stress measurement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Edrisy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alam, M.K., Edrisy, A., Urbanic, J. et al. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel. J. of Materi Eng and Perform 26, 1076–1084 (2017). https://doi.org/10.1007/s11665-017-2541-x

Download citation

Keywords

  • AISI 420
  • cladding
  • heat treatment
  • laser
  • martensitic
  • microhardness
  • microstructure
  • residual stress
  • stainless steel