Skip to main content
Log in

Microstructure and Corrosion Behavior of Laser Melted 304L SS Weldment in Nitric Acid Medium

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The manuscript presents the effect of laser surface melting on the corrosion property of 304L SS weldment in nitric acid medium. 304L SS weldment was prepared by gas tungsten arc welding process and subsequently laser surface melted using Nd:YAG laser. The microstructure and corrosion resistance of laser surface melted 304L SS weldment was evaluated and compared with that of 304L SS as-weldment and 304L SS base. Microstructural evaluation was carried out using optical and scanning electron microscopes attached with energy-dispersive x-ray spectroscopy. Corrosion investigations were carried out in 4 and 8 M nitric acid by potentiodynamic polarization technique. From the results, it was found that laser surface melting of the weldment led to chemical and microstructural homogeneities, accompanied by a substantial decrease in delta ferrite content, that enhanced the corrosion resistance of the weldment in 4 and 8 M nitric acid. However, the enhancement in the corrosion resistance was not substantial. The presence of small amount of delta ferrite (2-4 wt.%) in the laser surface melted specimens was found to be detrimental in nitric acid. X-ray photoelectron spectroscopy studies were carried out to investigate the composition of the passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U. Kamachi Mudali, Austenitic Stainless Steel for the Backend of the Nuclear Fuel Cycle, Adv. Mater. Res., 2013, 794, p 530–538

    Article  Google Scholar 

  2. U. Kamachi Mudali, R.K. Dayal, and J.B. Gnanamoorthy, Corrosion Studies on Materials of Construction for Spent Nuclear Fuel Reprocessing Plant Equipment, J. Nucl. Mater., 1993, 203, p 73–82

    Article  Google Scholar 

  3. S. Girija, V.R. Raju, U. Kamachi Mudali, and R.K. Dayal, Corrosion Assessment of Type 304L Stainless Steel in Nitric Acid, Corros. Eng., Sci. Technol., 2003, 38, p 309–312

    Article  Google Scholar 

  4. S. Girija, U. Kamachi Mudali, C. Andreev, L. Ninova, and B. Raj, Corrosion Behaviour of High Nitrogen Stainless Steel in Nitric Acid and Chloride Environment, Corrosion, 2012, 68, p 922–931

    Article  Google Scholar 

  5. S. Ningshen, U. Kamachi Mudali, G. Amarendra, and B. Raj, Corrosion Assessment of Nitric Acid Grade Austenitic Stainless Steels, Corros. Sci., 2009, 51, p 322–329

    Article  Google Scholar 

  6. S. Girija, U. Kamachi Mudali, H.S. Khatak, and B. Raj, The Application of Electrochemical Noise Resistance to Evaluate the Corrosion Resistance of AISI, Type 304 SS in Nitric Acid, Corros. Sci., 2007, 49, p 4051–4068

    Article  Google Scholar 

  7. D.M. Follstaedt and S.T. Picraux, Surface Alloying by Ion, Electron and Laser Beams, in L.E. Rehn and S.T. Picraux (eds.), American Society for Metals, Wiedersich, 1987, p 127–221

  8. F. Stalder and D.J. Duquette, Slow Strain Rate Stress Corrosion Cracking of Type 304 Stainless Steels, Corrosion, 1977, 33, p 67–72

    Article  Google Scholar 

  9. J.A. Brooks, A.W. Thompson and C. Williams, A Fundamental Study of the Beneficial Effects of Delta Ferrite in Reducing Weld Cracking, Weld. Res. Suppl., 1984, p 71 s–83 s

  10. Y. Song, T.N. Baker, and N.A. McPherson, A Study of Precipitation in as-Welded 316 LN Plate Using 316L/317L Weld Metal, Mater. Sci. Eng., A, 1996, 212, p 228–234

    Article  Google Scholar 

  11. U. Kamachi Mudali, R.K. Dayal, J.B. Gnanamoorthy, S.M. Kanetkar, and S.B. Ogale, Localized Corrosion Studies on Laser Surface Melted Type 316 Austenitic Stainless Steel, Mater. Trans., JIM, 1991, 33, p 845–853

    Article  Google Scholar 

  12. U. Kamachi Mudali, R.K. Dayal, and G.L. Goswami, Laser Surface Melting for Improving Corrosion Resistance of Stainless Steel, Anti Corros. Methods Mater., 1998, 45, p 181–188

    Article  Google Scholar 

  13. E. McCafferty and P.G. Moore, Corrosion Behavior of Laser-Surface Melted and Laser-Surface Alloyed Steels, J. Electrochem. Soc., 1986, 133, p 1090–1096

    Article  Google Scholar 

  14. N. Parvathavarthini, R.V. Subbarao, S. Kumar, R.K. Dayal, and H.S. Khatak, Elimination of Intergranular Corrosion Susceptibility of Cold Worked And Sensitized AISI, 316 SS by Laser Surface Melting, J. Mater. Eng. Perform., 2001, 10, p 5–13

    Article  Google Scholar 

  15. R. Kaul, N. Parvathavarthini, P. Ganesh, S.V. Mulki, I. Samajdar, R.K. Dayal, and L.M. Kukreja, A Novel Pre-welding Laser Surface Treatment for Enhanced Inter-granular Corrosion Resistance of Austenitic Stainless Steel Weldment, Weld. J., 2009, 88, p 233–242

    Google Scholar 

  16. N. Parvathavarthini, R.K. Dayal, R. Sivakumar, U. Kamachi Mudali, and A. Bharati, Pitting Corrosion Resistance of Laser Surface Alloyed 304 Stainless Steel, Mater. Sci. Technol., 1992, 8, p 1070–1074

    Article  Google Scholar 

  17. C.R. Molock, R.P. Waiters, and P.M. Fabis, Effect of Laser Processing on the Electrochemical Behavior of Fe-Cr ALLOYS, J. Electrochem. Soc., 1987, 134, p 289–294

    Article  Google Scholar 

  18. T.R. Anthony and H.E. Cline, Surface Normalization of Sensitized Stainless Steel, J. Appl. Phys., 1978, 49, p 1248

    Article  Google Scholar 

  19. S. Yang, Z. Wang, H. Kokawa, and Y.S. Sato, Reassessment of the Effects of Laser Surface Melting on IGC of SUS 304, Mater. Sci. Eng., A, 2008, 474, p 112–119

    Article  Google Scholar 

  20. P.K. Samantaroy, G. Suresh, R. Kaul, and U. Kamachi Mudali, Corrosion Enhancement of Ni Base Superalloys by Laser Surface Melting, Surf. Eng., 2013, 29(7), p 522–530

    Article  Google Scholar 

  21. G. Suresh, N. Parvathavarthini, U. Kamachi Mudali, B. Raj, Ch Andreev, and L. Nenova, Ferrite Morphology and Variations in Ferrite Content in Austenitic Stainless Steel Welds, Steel Tech., 2010, 4(4), p 77

    Google Scholar 

  22. S.A. David, Ferrite Morphology and Variations in Ferrite Content in Austenitic Stainless Steel Welds, Suppl. Weld. J., 1981, p 63–71

  23. J.C. Lippold and D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steel, Wiley, Hoboken, 2005, p 147

    Google Scholar 

  24. C.C. Hsieh, D.Y. Lin, M.C. Chen, and W. Wu, Microstructure, Recrystallization, and Mechanical Property Evolutions in the Heat-Affected and Fusion Zones of the Dissimilar Stainless Steels, Mater. Trans., 2007, 48(11), p 2898–2902

    Article  Google Scholar 

  25. S.A. David, G.M. Goodwin, and D.N. Braski, Solidification Behavior of Austenitic Stainless Steel Filler Metals, Weld. J., 1979, 58, p 330–336

    Google Scholar 

  26. S.A. David, J.M. Vitek and T.L. Hebble, Effect of Rapid Solidification on Stainless Steel Weld Metal Microstructures and Its Implications on the Schaeffler Diagram, Suppl. Weld. J., 1987, 289 s–300 s

  27. R. Saluja and K.M. Moeed, The Emphasis of Phase Transformations and Alloying Constituents on Hot Cracking Susceptibility of Type 304L and 316L Stainless Steel Welds, Int. J. Eng. Sci. Tech., 2012, 4, p 2206–2216

    Google Scholar 

  28. J.C. Lippold and W.F. Savage, Solidification of Austenitic Stainless Steel Weldments: Part 2—The Effect of Alloy Composition on Ferrite Morphology, Weld. Res. Suppl., 1980, 59, p 48s–58s

    Google Scholar 

  29. A. Di Schino, M.G. Mecozzi, M. Barteri, and J.M. Kenny, Solidification Mode and Residual Ferrite in Low-Ni Austenitic Stainless Steels, J. Mat. Sci., 2000, 35, p 375–380

    Article  Google Scholar 

  30. P. Fauvet, F. Balbaud, R. Robin, Q.T. Tran, A. Mugnier, and D. Espinoux, Corrosion Mechanisms of Austenitic Stainless Steels in Nitric Media Used in Reprocessing Plants, J. Nucl. Mater., 2008, 375, p 52–64

    Article  Google Scholar 

  31. F. Balbaud, G. Sanchez, P. Fauvet, G. Santarini, and G. Picard, Mechanism of Corrosion of AISI, 304L Stainless Steel in the Presence of Nitric Acid Condensates, Corros. Sci., 2000, 42, p 1685–1707

    Article  Google Scholar 

  32. A. Ravi Shankar, S. Niyanth, M. Vasudevan, and U. Kamachi Mudali, Microstructural Characterization and Corrosion Behaviour of Activated Flux (A-GTAW) and Multipass (M-GTAW) Stainless Steel Weld Joints in Nitric Acid, Corrosion, 2012, 68, p 762–773

    Article  Google Scholar 

  33. A. Nadezhdin, K. Cooper, and G. Timbers, Effect of Ferrite on Cast Stainless Steels, Mater. Perform., 1994, 33, p 62–65

    Google Scholar 

  34. A.J. Sedriks, Role of Sulfide Inclusions in Pitting and Crevice Corrosion of Stainless Steels, Int. Met. Rev., 1983, 28, p 295–307

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. R. Asuwathraman, Scientist, Material Chemistry Division, and Mr. Nandagopala Krishna, Scientist, Corrosion Science and Technology Group (CSTG), Indira Gandhi Centre for Atomic Research, Kalpakkam, for the support rendered in XRD and XPS studies. Thanks are due to Mr. T. Nandakumar, CSTG for the support rendered during the course of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kamachi Mudali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, G., Kishor, P.S.V.R.A., Dasgupta, A. et al. Microstructure and Corrosion Behavior of Laser Melted 304L SS Weldment in Nitric Acid Medium. J. of Materi Eng and Perform 26, 773–782 (2017). https://doi.org/10.1007/s11665-016-2488-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2488-3

Keywords

Navigation