Corrosion Behavior of Novel Al-Al2O3 Composites in Aerated 3.5% Chloride Solution


The corrosion behavior of novel Al-Al2O3 MMCs was evaluated in aerated 3.5% NaCl solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). These materials corrode almost spontaneously by pitting in aerated 3.5% NaCl solution. Observations indicate that intermetallic particles in these composites appear to play an important role in this pitting corrosion behavior. Addition of Al2O3 particles to the base alloys did not appear to increase their corrosion resistance significantly, although corrosion rate was affected by these reinforcement particles. In cyclic polarization experiments, the small difference between the pitting potentials and the repassivation potentials for these MMCs indicated their low resistance to pitting corrosion. EIS measurements indicate adsorption/diffusion phenomena at the interface of the composites. Electrically equivalent circuits are proposed to describe and substantiate the corrosion processes occurring in these materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    MIL-HDBK-17-4A, Department of Defense Handbook, Composite Materials Handbook, vol. 4, Metal Matrix Composites, 1999

  2. 2.

    S. Tjong, Carbon Nanotube Reinforced Composite, Wiley-VCH, Weinheim, 2009, ISBN 978-3-527-40892-4

    Book  Google Scholar 

  3. 3.

    R. Baboian, Ed., Corrosion Test and Standards: Applications and Interpretation, 2nd ed., ASTM International, West Conshohocken, 2005, ISBN 0-8031-2098-2

    Google Scholar 

  4. 4.

    T. Durai, K. Das, and S. Das, Corrosion Characterization of Alumina-Magnesium Metal Matrix Composites, Corros. Sci., 2008, 49, p 1110–1130

    Google Scholar 

  5. 5.

    L.H. Hihara and R.M. Latanision, Galvanic Corrosion of Aluminum Matrix Composites, Corrosion, 1992, 48, p 546–552

    Article  Google Scholar 

  6. 6.

    L.H. Hihara and R.M. Latanision, Corrosion of Metal Matrix Composites, Int. Mater. Rev., 1994, 39, p 245–264

    Article  Google Scholar 

  7. 7.

    K.K. Alaneme and M.O. Bodunrin, Corrosion Behavior of Alumina Reinforced Aluminum (6063) Metal Matrix Composites, JMMCE, 2011, 10, p 1153–1165

    Article  Google Scholar 

  8. 8.

    K.A. El-Aziz, D. Saber, and H.E.M. Sallam, Wear and Corrosion Behavior of Al-Si Matrix Composite Reinforced with Alumina, J. Bio. Tribo Corros., 2015, 1, p 5–14

    Article  Google Scholar 

  9. 9.

    C. Vargel, Corrosion of Aluminum, Amsterdam, Elsevier Ltd., 2004, ISBN 9780080444956

  10. 10.

    T.G. Harvey, A.E. Hughes, S.G. Hardin, T. Nikpour, S.K. Toh, A. Boag, D. McCulloch, and M. Horne, Non-chromate Deoxidation of AA2024-T3: Sodium Bromate-Nitric Acid (20–60 degrees C), Appl. Surf. Sci., 2008, 254, p 3562–3575

    Article  Google Scholar 

  11. 11.

    M. Gao, C.R. Feng, and R.P. Wei, An Analytical Electron Microscopy Study of Constituent Particles in Commercial 7075-T6 and 2024-T3 Alloys, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 1998, 29, p 1145–1151

    Article  Google Scholar 

  12. 12.

    S. Candan, An Investigation on Corrosion Behavior of Pressure Infiltrated Al-Mg alloy/SiCp Composites, Corros. Sci., 2009, 51, p 1392–1398

    Article  Google Scholar 

  13. 13.

    A. Bakkar and V. Neubert, Corrosion Characterization of Alumina-Magnesium Metal Matrix Composite, Corros. Sci., 2007, 49, p 1110–1130

    Article  Google Scholar 

  14. 14.

    M. Metzger, Intergranular Corrosion of Single Phase Aluminium as a Pitting Phenomenon, Colloque, 1975, C4(10), p C4–387

    Google Scholar 

  15. 15.

    J. Datta, B. Samanta, A. Jana, S. Sinha, C. Bhattacharya, and S. Bandyopadhyay, Role of Cl- and NO -3 Ions on the Corrosion Behavior of 20% SiCp Reinforced 6061-Al Metal Matrix Composite: A Correlation Between Electrochemical Studies and Atomic Force Microscopy, Corros. Sci., 2008, 50, p 2658–2668

    Article  Google Scholar 

  16. 16.

    R. Cervantes, L. Murr, and R. Arrowood, Copper Nucleation and Growth During the Corrosion of Aluminum Alloy 2524 in Sodium Chloride Solutions, J. Mater. Sci., 2001, 36, p 4079–4088

    Article  Google Scholar 

  17. 17.

    H. Obispo, L. Murrr, R. Arrowood, and E. Trillo, Copper Deposition During the Corrosion of Aluminum Alloy 2024 in Sodium Chloride Solutions, J. Mater. Sci., 2000, 35, p 3479–3495

    Article  Google Scholar 

  18. 18.

    R.G. Buchheit, M.A. Martinez, and L.P. Montes, Evidence for Cu ion Formation by Dissolution and Dealloying the Al2CuMg Intermetallic Compound in Rotating Ring-Disk Collection Experiments, J. Electrochem. Soc., 2000, 147, p 119–124

    Article  Google Scholar 

  19. 19.

    G. Frankel, Pitting Corrosion of Metals, J. Electrochem. Soc., 1998, 145, p 2186–2196

    Article  Google Scholar 

  20. 20.

    Z. Weilong and G. Frankel, Anisotropy of Localized Corrosion in AA 2024-T3, Electrochem. Solid-State Lett., 2000, 3, p 268–270

    Google Scholar 

  21. 21.

    G. Kiourtsidis and S. Skolianos, Pitting Corrosion of Artificially Aged T6 AA2024/SiCp Composites in 3.5wt.% NaCl Aqueous Solutions, Corros. Sci., 2007, 49, p 2711–2725

    Article  Google Scholar 

  22. 22.

    Y. Kim and R. Buchheit, A Characterization of the Inhibiting Effect of Cu on Metastable Pitting Al-Cu Solid Solution Alloys, Electrochim. Acta, 2007, 52, p 2437–2446

    Article  Google Scholar 

  23. 23.

    J. Hu, W. Chu, W. Fei, and L. Zhao, Effect of Interfacial Reaction on Corrosion Behavior of Alumina Borate Whisker Reinforced 6061 Al Composite, Mater. Sci. Eng., 2004, A374, p 153–159

    Article  Google Scholar 

  24. 24.

    A. Bakkar and V. Neubert, Corrosion Characterization of Alumina-Magnesium Metal Matrix Composite, Corros. Sci., 2007, 49, p 1110–1130

    Article  Google Scholar 

  25. 25.

    K. Gopinath, R. Balasubramaniam, and V. Murthy, Corrosion Behavior of Cast Al-Al2O3 Particulate Composites, J. Mater. Sci. Lett., 2001, 20, p 793–794

    Article  Google Scholar 

  26. 26.

    J. De Salazar, A. Ureña, S. Manzanedo, and M. Barrena, Corrosion Behaviour of AA6061 and AA7005 Reinforced with Al2O3 Particles in Aerated 3.5% Chloride Solutions: Potentiodynamic Measurements and Microstructure Evaluation, Corros. Sci., 1999, 41, p 529–545

    Article  Google Scholar 

  27. 27.

    K. Jafarzadeh, T. Shahrabi, and M. Hosseini, EIS study on Pitting Corrosion of AA5083-H321 Aluminum-Magnesium Alloy in Stagnant 3.5% NaCl Solution, J. Mater. Sci. Technol., 2008, 24, p 215–219

    Google Scholar 

  28. 28.

    A. Aballe, M. Bethencourt, F. Botana, M. Marcos, and M. Rodríguez, Corrosion Monitoring of the AA2024 Alloy in NaCl Solutions by Electrochemical Noise Measurements, Rev. Metal. Madrid., 1998, 34, p 42–46

    Article  Google Scholar 

  29. 29.

    R. Cottis and S. Turgoose, Electrochemical Impedance and Noise, Houston, NACE International, 1999, ISBN 1-57590-093-9

    Google Scholar 

  30. 30.

    S. Candan, Effect of SiC Particle Size on Corrosion Behavior of Pressure Infiltrated Al Matrix Composites in NaCl Solution, Mater. Lett., 2004, 58, p 3601–3605

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. A. Sundaram.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acevedo-Hurtado, P.O., Sundaram, P.A. Corrosion Behavior of Novel Al-Al2O3 Composites in Aerated 3.5% Chloride Solution. J. of Materi Eng and Perform 26, 69–75 (2017).

Download citation


  • aluminum matrix composites
  • Al-Al2O3 MMCs
  • corrosion behavior
  • EIS
  • potentiodynamic polarization