Skip to main content
Log in

A Study on the Recrystallization Behavior of Ni-Based Alloy G3 During Hot Deformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An integrated microstructure evolution model of thermomechanical processing was developed in terms of dynamic recrystallization (DRX), post-dynamic recrystallization (PDRX) and grain growth. Hot compression tests were carried out on a Gleeble-1500 thermal simulator under different conditions to model DRX, PDRX and short-time grain growth during the post-deformation and cooling process. Furthermore, in combination with the established microstructure evolution models, an elastic–plastic finite element model was built using DEFORM-2D software to simulate the microstructure evolution during the hot extrusion process. The simulation result was compared with the microstructure of a hot-extruded pipe of alloy G3 manufactured in a factory. The simulation results agree well with the experimental ones, validating the accuracy of the established microstructure evolution model. Furthermore, the finite element simulation is an effective method for hot deformation analysis, which can provide theoretical guidance for the optimization manufacturing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. L. Wang, F. Liu, J. Cheng, Q. Zuo, and C. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloys Compd., 2015, 623, p 69–78

    Article  Google Scholar 

  2. Z.F. Yin, M.L. Yan, Z.Q. Bai, W.Z. Zhao, and W.J. Zhou, Galvanic Corrosion Associated with SM 80SS Steel and Ni-Based Alloy G3 Couples in NaCl Solution, Electrochim. Acta, 2008, 53, p 6285–6292

    Article  Google Scholar 

  3. B.S. Lee, M.C. Kim, J.H. Yoon, and J.H. Hong, Characterization of High Strength and High Toughness Ni–Mo–Cr Low Alloy Steels for Nuclear Application, Int. J. Press. Vessels Pip., 2010, 87, p 74–80

    Article  Google Scholar 

  4. N. Park, I. Kim, Y. Na, and J. Yeom, Hot Forging of a Nickel-Base Superalloy, J. Mater. Process. Technol., 2001, 111, p 98–102

    Article  Google Scholar 

  5. R. Doherty, D. Hughes, F. Humphreys, J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, and A. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274

    Article  Google Scholar 

  6. G. Shen, S.L. Semiatin, and R. Shivpuri, Modeling Microstructural Development During the Forging of Waspaloy, Metall. Mater. Trans. A, 1995, 26, p 1795–1803

    Article  Google Scholar 

  7. X. Li, L. Duan, J. Li, and X. Wu, Experimental Study and Numerical Simulation of Dynamic Recrystallization Behavior of a Micro-alloyed Plastic Mold Steel, Mater. Des., 2015, 66, p 309–320

    Article  Google Scholar 

  8. Y. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759

    Article  Google Scholar 

  9. Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra, An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel–Chromium Alloy (800H) During Hot Deformation, Mater. Sci. Eng. A, 2013, 585, p 71–85

    Article  Google Scholar 

  10. Y. Cao, H. Di, R.D.K. Misra, X. Yi, J. Zhang, and T. Ma, On the Hot Deformation Behavior of AISI, 420 Stainless Steel Based on Constitutive Analysis and CSL Model, Mater. Sci. Eng. A, 2014, 593, p 111–119

    Article  Google Scholar 

  11. J.T. Yeom, S.L. Chong, J.H. Kim, and N.K. Park, Finite-Element Analysis of Microstructure Evolution in the Cogging of an Alloy 718 Ingot, Mater. Sci. Eng. A, 2007, 449, p 722–726

    Article  Google Scholar 

  12. Y.S. Na, J.T. Yeom, N.K. Park, and J.Y. Lee, Simulation of Microstructures for Alloy 718 Blade Forging Using 3D FEM Simulator, J. Mater. Process. Technol., 2003, 141, p 337–342

    Article  Google Scholar 

  13. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part II. Post-deformation Recrystallization, Metall. Mater. Trans. A, 2008, 39, p 1371–1381

    Article  Google Scholar 

  14. C. Roucoules, P.D. Hodgson, S. Yue, and J.J. Jonas, Softening and Microstructural Change Following the Dynamic Recrystallization of Austenite, Metall. Mater. Trans. A, 1994, 25, p 389–400

    Article  Google Scholar 

  15. Y. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, and L.-T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113

    Article  Google Scholar 

  16. Z. Bi, M. Zhang, J. Dong, K. Luo, and J. Wang, A New Prediction Model of Steady State Stress Based on the Influence of the Chemical Composition for Nickel-Base Superalloys, Mater. Sci. Eng. A, 2010, 527, p 4373–4382

    Article  Google Scholar 

  17. H. McQueen and N. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63

    Article  Google Scholar 

  18. P. Peczak and M.J. Luton, The Effect of Nucleation Models on Dynamic Recrystallization II. Heterogeneous Stored-Energy Distribution, Philos. Mag. B, 1994, 70, p 817–849

    Article  Google Scholar 

  19. A.D. Rollett and D. Raabe, A Hybrid Model for Mesoscopic Simulation of Recrystallization, Comput. Mater. Sci., 2001, 21, p 69–78

    Article  Google Scholar 

  20. H. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387, p 203–208

    Article  Google Scholar 

  21. J. Wang, J. Dong, M. Zhang, and X. Xie, Hot Working Characteristics of Nickel-Base Superalloy 740H During Compression, Mater. Sci. Eng. A, 2013, 566, p 61–70

    Article  Google Scholar 

  22. C.M. Sellars and W.M. Tegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 1966, 63, p 731–746

    Google Scholar 

  23. M. El Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI, 304 Steels: A Comparative Study, Mater. Sci. Eng. A, 2003, 343, p 116–125

    Article  Google Scholar 

  24. M. Aghaie-Khafri and F. Adhami, Hot Deformation of 15-5 PH Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 1052–1057

    Article  Google Scholar 

  25. Y. Wang, W. Shao, L. Zhen, and X. Zhang, Microstructure Evolution During Dynamic Recrystallization of Hot Deformed Superalloy 718, Mater. Sci. Eng. A, 2008, 486, p 321–332

    Article  Google Scholar 

  26. D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy, Mater. Des., 2011, 32, p 696–705

    Article  Google Scholar 

  27. X.-M. Chen, Y. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577

    Article  Google Scholar 

  28. T. Senuma, and H. Yada, Microstructural Evolution of Plain Carbon Steels in Multiple Hot Working, Proceedings of the Riso International Symposium on Metallurgy and Materials Science, 7th ed., 1986, p 547–552

  29. T. Sakai and J.J. Jonas, Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209

    Article  Google Scholar 

  30. E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136

    Article  Google Scholar 

  31. M.S. Chen, Y.C. Lin, and X.S. Ma, The Kinetics of Dynamic Recrystallization of 42CrMo Steel, Mater. Sci. Eng. A, 2012, 556, p 260–266

    Article  Google Scholar 

  32. T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, J. Mater. Process. Technol., 1995, 53, p 349–361

    Article  Google Scholar 

  33. C.M. Sellars, Modelling Microstructural Development During Hot Rolling, Mater. Sci. Technol., 1990, 6, p 1072–1081

    Article  Google Scholar 

  34. T. Sakai, M. Ohashi, K. Chiba, and J.J. Jonas, Recovery and Recrystallization of Polycrystalline Nickel After Hot Working, Acta Metall., 1988, 36, p 1781–1790

    Article  Google Scholar 

  35. L.X. Zhou and T.N. Baker, Effects on Dynamic and Metadynamic Recrystallization on Microstructures of Wrought IN-718 Due to Hot Deformation, Mater. Sci. Eng. A, 1995, 196, p 89–95

    Article  Google Scholar 

  36. P. Uranga, A.I. Fernández, B. López, and J.M. Rodriguez-Ibabe, Transition Between Static and Metadynamic Recrystallization Kinetics in Coarse Nb Microalloyed Austenite, Mater. Sci. Eng. A, 2003, 345, p 319–327

    Article  Google Scholar 

  37. M. Avrami, Kinetics of Phase Change. I, General Theory, J. Chem. Phys., 1939, 7, p 1103–1112

    Article  Google Scholar 

  38. Y.C. Lin and M.S. Chen, Study of Microstructural Evolution During Metadynamic Recrystallization in a Low-Alloy Steel, Mater. Sci. Eng. A, 2009, 501, p 229–234

    Article  Google Scholar 

  39. J.H. Beynon and C.M. Sellars, Modelling Microstructure and Its Effects During Multipass Hot Rolling, ISIJ Int., 1992, 32, p 359–367

    Article  Google Scholar 

  40. W. Jue, Microstructure Controlled Extrudability Criterion of Nickel-Base Alloy Tubes, University of Science and Technology Beijing, Beijing, 2012

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from the National Basic Research Program (863 Program) of China under Grant No. 2013AA031005 and the National Natural Science Foundation of China under Grant No. 51301085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Dong, J., Zhang, M. et al. A Study on the Recrystallization Behavior of Ni-Based Alloy G3 During Hot Deformation. J. of Materi Eng and Perform 25, 5145–5156 (2016). https://doi.org/10.1007/s11665-016-2412-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2412-x

Keywords

Navigation