Skip to main content
Log in

In Situ Synthesis of Ceramic Reinforcements for Carbon/CuCrZr Joints Brazed with Composite Fillers

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Brazing of two kinds of carbon materials including graphite and carbon fiber-reinforced carbon composites to copper alloys has been realized with CuTiH2 + BN composite fillers. The microstructure characterization reveals that the ceramic reinforcements containing TiN particles and TiB whiskers have been synthesized by in situ reaction of BN additives with Ti discomposed from TiH2 in the composite filler. The filler layer of the joints is mainly composed of Cu-based solid solutions [Cu (ss)] and Ti-Cu intermetallics along with ceramic reinforcements. Furthermore, a continuous thin reaction layer mainly containing TiC is developed at the interface close to the carbon substrates. The growth of TiC layer is mainly controlled by the diffusion of carbon from the substrates into the liquid filler through the TiC layer formed. The interface evolution of the graphite/CuCrZr joints has been discussed. The electrical resistivity of the joining area is relatively low, which highly meets the requirement for the carbon commutator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. He, J. Yang, H. Shen, L. Wang, and Z. Gao, Brazing Graphite to Hastelloy N Superalloy Using Pure-Au Filler Metal: Bonding Mechanism and Joint Properties, Mater. Des., 2016, 104, p 1–9

    Google Scholar 

  2. M. Singh, R. Asthana, C. Smith, and A. Gyekenyesi, Integration of High-Conductivity Graphite Foam to Metallic Systems Using Ag-Cu-Ti and Ag-Cu-Pd Braze Alloys, Int. J. Appl. Ceram. Technol., 2013, 10(5), p 790–800

    Article  Google Scholar 

  3. X.R. Song, H.J. Li, and X.R. Zeng, Brazing of C/C Composites to Ti6Al4 V Using Multiwall Carbon Nanotubes Reinforced TiCuZrNi Brazing Alloy, J. Alloys Compd., 2016, 664, p 175–180

    Article  Google Scholar 

  4. J. Zhang, T. Wang, C. Liu, and Y. He, Effect of Brazing Temperature on Microstructure and Mechanical Properties of Graphite/Copper Joints, Mater. Sci. Eng. A, 2014, 594, p 26–31

    Article  Google Scholar 

  5. R. Fedele, A. Ciani, L. Galantucci, V. Casalegno, A. Ventrella, and M. Ferraris, Characterization of Innovative CFC/Cu Joints by Full-field Measurements and Finite Elements, Mater. Sci. Eng. A, 2014, 595, p 306–317

    Article  Google Scholar 

  6. J. Lee, K. Seo, N. Hirai, N. Takahira, and T. Tanaka, Intrinsic Contact Angle and Contact Interaction Between Liquid Silver and Solid Graphite, Met. Mater. Int., 2007, 13(2), p 83–86

    Article  Google Scholar 

  7. B. Schedler, T. Huber, T. Friedrich, E. Eidenberger, M. Kapp, C. Scheu, R. Pippan, and H. Clemens, Characteristics of an Optimized Active Metal Cast Joint between Copper and C/C, Phys. Scr., 2007, 128, p 200–203

    Article  Google Scholar 

  8. Y. Shen, Z. Li, C. Hao, and J. Zhang, Joining C/C Composite to Copper Using Active Cu-3.5Si Braze, J. Nucl. Mater., 2012, 421, p 28–31

    Article  Google Scholar 

  9. V. Casalegno, M. Salvo, and M. Ferraris, Surface Modification of Carbon/Carbon Composites to Improve Their Wettability by Copper, Carbon, 2012, 50, p 2296–2306

    Article  Google Scholar 

  10. M. Singh and R. Asthana, Characterization of Brazed Joints of C-C Composite to Cu-Clad-Molybdenum, Compos. Sci. Technol., 2008, 68, p 3010–3019

    Article  Google Scholar 

  11. P.W. Trester, P.G. Valentine, W.R. Johnson, E. Chin, E.E. Reis, and A.P. Colleraine, Tensile Fracture Characterization of Braze Joined Copper-to-CFC Coupon as Assemblies, J. Nucl. Mater., 1996, 233–237, p 906–912

    Article  Google Scholar 

  12. S. Libera, and E. Visca, Junction Process for a Ceramic Material and a Metallic Material with the Interposition of a Transition Material. Patent WO, No. 2006024971, 2006

  13. J. Janczak-Rusch, G. Kaptay, and L.P.H. Jeurgens, Interfacial Design for Joining Technologies: An Historical Perspective, J. Mater. Eng. Perform., 2014, 23, p 1608–1613

    Article  Google Scholar 

  14. J. Martinez Fernandez, R. Asthana, M. Singh, and F. Valera, Active Metal Brazing of Silicon Nitride Ceramics Using a Cu-Based Alloy and Refractory Metal Interlayers, Ceram. Int., 2016, 42(4), p 5447–5454

    Article  Google Scholar 

  15. Q. Miao, W. Ding, Y. Zhu, Z. Chen, J. Xu, and C. Yang, Joining Interface and Compressive Strength of Brazed Cubic Boron Nitride Grains with Ag-Cu-Ti/TiX Composite Fillers, Ceram. Int., 2016, 42(12), p 13723–13737

    Article  Google Scholar 

  16. M.C. Halbig, B.P. Coddington, R. Asthana, and M. Singh, Characterization of Silicon Carbide Joints Fabricated Using SiC Particulate-Reinforced Ag-Cu-Ti Alloys, Ceram. Int., 2013, 39, p 4151–4162

    Article  Google Scholar 

  17. T. Wang, T. Ivas, C. Leinenbach, and J. Zhang, Microstructural Characterization of Si3N4/42CrMo Joint Brazed with Ag-Cu-Ti + TiNp Composite Filler, J. Alloys Compd., 2015, 651, p 623–630

    Article  Google Scholar 

  18. J. Wang, H. Wei, P. He, T. Lin, and F. Lu, Microstructure and Mechanical Properties of Tin-Bismuth Solder Reinforced by Aluminum Borate Whiskers, J. Electron. Mater., 2015, 44(10), p 3872–3879

    Article  Google Scholar 

  19. Y. Mao, S. Yu, Y. Zhang, B. Guo, Z. Ma, and Q. Deng, Microstructure Analysis of Graphite/Cu Joints Brazed with (Cu-50TiH2) + B Composite Filler, Fusion Eng. Des., 2015, 100, p 152–158

    Article  Google Scholar 

  20. Y. Mao, S. Wang, L. Peng, Q. Deng, P. Zhao, B. Guo, and Y. Zhang, Brazing of Graphite to Cu with Cu50TiH2 + C Composite Filler, J. Mater. Sci., 2016, 51, p 1671–1679

    Article  Google Scholar 

  21. Y. Mao, L. Peng, Q. Deng, D. Nie, S. Wang, and L. Xi, Wetting Behavior and Interfacial Interactions of Molten Cu50Ti Alloy with Hexagonal BN and TiB2 Ceramics, Ceram. Int., 2016, 42, p 9906–9912

    Article  Google Scholar 

  22. C. Isola, M. Salvo, M. Ferraris, and M. Appendino, Montorsi, Joining of Surface Modified Carbon/Carbon Composites Using a Barium-Aluminum-Boro-Silicate Glass, J. Eur. Ceram. Soc., 1998, 18(8), p 1017–1024

    Article  Google Scholar 

  23. N.V. Moutis, C. Jimenez, X. Azpiroz, Th Speliotis, C. Wilhelmi, S. Messoloras, and K. Mergia, Brazing of Carbon-Carbon Composites to Nimonic Alloys, J. Mater. Sci., 2010, 45, p 74–81

    Article  Google Scholar 

  24. N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Amsterdam, 1999

    Google Scholar 

  25. S.Y. Peng, The Brazing Process and Its Mechanism of Copper to Graphite. Dissertation for the Master Degree in Engineering, Harbin Institute of Technology, 2009 (in Chinese)

  26. F. Santerre, M.A. El Khakani, M. Chaker, and J.P. Dodelet, Properties of TiC Thin Films Grown by Pulsed Laser Deposition, Appl. Surf. Sci., 1999, 148(1–2), p 24–33

    Article  Google Scholar 

  27. R.A. Matula, Electrical Resistivity of Copper, Gold, Palladium, and Silver, J. Phys. Chem. Ref. Data, 1979, 8(4), p 1147–1298

    Article  Google Scholar 

  28. C.H. Hwang, Y.J. Ryeom, and K. Cho, Electrical Resistivity and Crystallization of Amorphous Cu-Ti Alloys, J. Less Common Met., 1982, 86, p 187–194

    Article  Google Scholar 

  29. D. Demirskyi, D. Agrawal, and A. Ragulya, Tough Ceramics by Microwave Sintering of Nanocrystalline Titanium Diboride Ceramics, Ceram. Int., 2014, 40, p 1303–1310

    Article  Google Scholar 

  30. Z. Guo, N. Li, and J. Hu, Cu-TiB Metal Matrix Composites Prepared by Powder Metallurgy Route, Sci. Sinter., 2015, 47, p 165–174

    Article  Google Scholar 

  31. M.M. Tünçay, L. Nguyen, P. Hendrickx, and M. Brochu, Evaluation of the Particle Bonding for Aluminum Sample Produced by Spark Plasma Sintering, J. Mater. Eng. Perform., 2016, 25, p 4521–4528

    Article  Google Scholar 

  32. A. Miriyev, M. Sinder, and N. Frage, Thermal Stability and Growth Kinetics of the Interfacial TiC Layer in the Ti Alloy/Carbon Steel System, Acta Mater., 2014, 75, p 348–355

    Article  Google Scholar 

  33. V.S. Dergunova, YuV Levinsky, A.N. Shurshakov, and G.A. Kravetsky, Carbon Interaction with Refractory Metals, Metallurgy, Moscow, 1974

    Google Scholar 

  34. A.M. James and M.P. Lord, Macmillan’s Chemical and Physical Data, Macmillan, London, 1992

    Google Scholar 

  35. M.I. De Barros, D. Rats, L. Vandenbulcke, and G. Frages, Influence of Internal Diffusion Barriers on Carbon Diffusion in Pure Titanium and Ti-6Al-4 V during Diamond Deposition, Diam. Relat. Mater., 1999, 8(6), p 1022–1032

    Article  Google Scholar 

  36. F.J.J. Van Loo and G.F. Bastin, On the Diffusion of Carbon in Titanium Carbide, Metall. Trans. A, 1989, 20(3), p 403–411

    Article  Google Scholar 

  37. E. Faran, I. Gotman, and E.Y. Gutmanas, Coating of BN Via Solid State Reaction with Ti Powder, Mater. Lett., 2000, 43, p 192–196

    Article  Google Scholar 

  38. M.G. Nicholas, D.A. Mortimer, L.M. Jones, and R.M. Crispin, Some Observations on the Wetting and Bonding of Nitride Ceramics, J. Mater. Sci., 1990, 25, p 2679–22689

    Article  Google Scholar 

  39. W. Ding, J. Xu, Y. Fu, B. Xiao, H. Su, and H. Xu, Interfacial Reaction between Cubic Boron Nitride and Ti during Active Brazing, J. Mater. Eng. Perform., 2006, 15, p 365–369

    Article  Google Scholar 

  40. A.K. Chattopadhyay and H.E. Hintermann, On Brazing of Cubic Boron Nitride Abrasive Crystals to Steel Substrate with Alloys Containing Cr or Ti, J. Mater. Sci., 1993, 28, p 5887–5893

    Article  Google Scholar 

  41. R. Yazdi and S.F. Kashani-Bozorg, Microstructure and Wear of In-situ Ti/(TiN + TiB) Hybrid Composite Layers Produced Using Liquid Phase Process, Mater. Chem. Phys., 2015, 152, p 147–157

    Article  Google Scholar 

  42. Z. Fan, Z.X. Guo, and B. Cantor, The Kinetics and Mechanism of Interfacial Reaction in Sigma Fibre-Reinforced Ti MMCs, Compos. Part A, 1997, 28, p 131–140

    Article  Google Scholar 

  43. C.L. Yeh and G.S. Teng, Use of BN as a Reactant in Combustion Synthesis of TiN-TiB2 Composites under Nitrogen Pressure, J. Alloys Compd., 2006, 417, p 109–115

    Article  Google Scholar 

  44. M.X. Yang, T.S. Lin, and P. He, Microstructure Evolution of Al2O3/Al2O3 Joint Brazed with Ag-Cu-Ti + B+TiH2 Composite Filler, Ceram. Int., 2012, 38, p 289–294

    Article  Google Scholar 

  45. Z.W. Yang, L.X. Zhang, W. Ren, M. Lei, and J.C. Feng, Interfacial Microstructure and Strengthening Mechanism of BN-Doped Metal Brazed Ti/SiO2-BN Joints, J. Eur. Ceram. Soc., 2013, 33, p 759–768

    Article  Google Scholar 

  46. S. Zhang, D. Sun, Y. Fu, H. Du, and Q. Zhang, Effect of Sputtering Target Power Density on Topography and Residual Stress during Growth of Nanocomposite nc-TiN/α-SiNx Thin Films, Diamond Relat. Mater., 2004, 13, p 1777–1784

    Article  Google Scholar 

  47. M. Singh, T. Ohji, R. Asthana, and S. Mathur, Ceramic Integration and Joining Technologies: From Macro to Nanoscale, 1st ed., Wiley-American Ceramic Society, New York, 2011

    Book  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant No. 51304148) and the Scientific Research Project from Hubei Provincial Department of Education (No. D20131504). The authors also deeply appreciate the helpful discussions from Ms. Lixia Xi at IFW Dresden, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangwu Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Yu, S., Deng, Q. et al. In Situ Synthesis of Ceramic Reinforcements for Carbon/CuCrZr Joints Brazed with Composite Fillers. J. of Materi Eng and Perform 25, 5262–5268 (2016). https://doi.org/10.1007/s11665-016-2398-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2398-4

Keywords

Navigation