Skip to main content
Log in

Effect of Cu Additions on Microstructure, Mechanical Properties and Hot-Tearing Susceptibility of Mg-6Zn-0.6Zr Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructures and mechanical properties of Mg-6Zn-xCu-0.6Zr (x = 0, 0.5, 1, 2, 3 wt.%) alloys are investigated. The effect of Cu additions on the hot-tearing susceptibility (HTS) of Mg-6Zn-0.6Zr is also studied using constrained rod casting apparatus equipped with a load cell and data acquisition system. The experimental results indicate that 0.5wt.% Cu addition into the Mg-6Zn-0.6Zr alloy shows the optimum comprehensive properties, i.e., a combination of high strength, high hardness, high hot-tearing resistance and excellent ductility. However, when Cu content reaches 2 and 3wt.%, the deterioration in mechanical properties observed is attributed to the increment in coarsened MgZnCu phase and the continuous networks of intergranular phases in these two alloys. The Cu-free base alloy had a high HTS, which is attributed to its large vulnerable temperature range and coarse grain structure, which easily caused tear propagation. In contrast, the Cu-contained alloys exhibited low HTS are due to their narrow vulnerable temperature ranges and its refined equiaxed grain structure, which effectively accommodated the stress developed during solidification. The hot-tearing fracture surfaces indicate that the hot-tearing initiated and propagated along the grain boundaries with liquid films. The results also suggest that the hot-tearing resistance can apparently be improved by increasing the initial mold temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Kojima, T. Aizawa, S. Kamado, and K. Higashi, Progressive Steps in the Platform Science and Technology for Advanced Magnesium Alloys, Mater. Sci. Forum, 2003, 419–422, p 3–20

    Article  Google Scholar 

  2. B.L. Mordike and T. Ebert, Magnesium: Properties–Applications–Potential, Mater. Sci. Eng., A, 2001, 302, p 37–45

    Article  Google Scholar 

  3. F.G. Meng, H.S. Liu, L.B. Liu, and Z.P. Jin, Thermodynamic Optimization of Mg-Nd System, Trans. Nonferrous Met. Soc. China, 2007, 17, p 77–81

    Article  Google Scholar 

  4. X. Gao and J.F. Nie, Characterization of Strengthening Precipitate Phases in a Mg-Zn Alloy, Scr. Mater., 2007, 56, p 645–648

    Article  Google Scholar 

  5. M. Shahzad and L. Wagner, The Role of Zr-Rich Cores in Strength Differential Effect in an Extruded Mg-Zn-Zr Alloy, J. Alloys Compd., 2009, 486, p 103–108

    Article  Google Scholar 

  6. J.C. Xie, Q.A. Li, X.Q. Wang, and J.H. Li, Microstructure and Mechanical Properties of AZ81 Magnesium Alloy with Y and Nd Elements, Trans. Nonferrous Met. Soc. China, 2008, 18(2), p 303–308

    Article  Google Scholar 

  7. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han, Effect of Y Concentration on the Microstructure and Mechanical Properties of as-cast Mg-Zn-Y-Zr alloys, J. Alloys Compd., 2007, 432(1/2), p 129–134

    Article  Google Scholar 

  8. H.M. Zhu, G. Sha, J.W. Liu, C.L. Wu, C.P. Luo, Z.W. Liu, P.K. Zheng, and S.P. Ringer, Microstructure and Mechanical Properties of Mg-6Zn-xCu-0.6Zr (wt%) alloys, J. Alloys Compd., 2011, 509, p 3526–3531

    Article  Google Scholar 

  9. J. Buha and T. Ohkubo, Natural Aging in Mg-Zn(-Cu) alloys, Metall. Mater. Trans. A, 2008, 39, p 2259–2273

    Article  Google Scholar 

  10. J. Buha, Mechanical Properties of Naturally Aged Mg-Zn-Cu-Mn Alloy, Mater. Sci. Eng. A, 2008, 489, p 127–137

    Article  Google Scholar 

  11. L. Zhou, Y.D. Huang, P.L. Mao, K.U. Kainer, and N. Hort, Influence of Composition on Hot Tearing in Binary Mg-Zn Alloy, Int. J. Cast Metal. Res., 2011, 24, p 170–176

    Article  Google Scholar 

  12. Z.S. Zhen, N. Hort, Y.D. Huang, O. Utke, N. Petri, and K.U. Kainer, Hot Tearing Behaviour of Binary Mg-1Al Alloy Using a Contraction Force Measuring Method, Int. J. Cast Met. Res., 2009, 22, p 331–334

    Article  Google Scholar 

  13. L. Zhou, Y.D. Huang, P.L. Mao, K.U. Kainer, Z. Liu, N. Hort. (2011) Investigations on Hot Tearing of Mg-Zn-(Al) Alloys. In: W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, S.N. Mathaudhu (eds) Magnesium Technology 2011. San Diego, pp 125–130

  14. L. Bichler and C. Ravindran, Investigations on the Stress and Strain Evolution in ZA91D Magnesium Alloy Castings During Hot Tearing, J. Mater. Eng. Perform., 2015, 24(6), p 2208–2218

    Article  Google Scholar 

  15. Z.Y. Zhang, L.M. Peng, X.Q. Zeng, and W.J. Ding, Effects of Cu and Mn on the Mechanical Properties and Damping Capacity of Mg-Cu-Mn Alloy, Trans. Nonferrous Met. Soc. China, 2008, 18, p 55–58

    Article  Google Scholar 

  16. S.M. He, L.M. Peng, X.Q. Zeng, W.J. Ding, and Y.P. Zhu, Comparison of the Microstructure and Mechanical Properties of a ZK60 Alloy With and Without 1.3wt.% Gadolinium Addition, Mater. Sci. Eng., A, 2006, 433, p 175–181

    Article  Google Scholar 

  17. S. Ganeshan, S.L. Shang, Y. Wang, and Z.K. Liu, Effect of Alloying Elements on the Elastic Properties of Mg from First-Principles Calculations, Acta Mater., 2009, 57, p 3876–3884

    Article  Google Scholar 

  18. L. Geng, B.P. Zhang, A.B. Li, and C.C. Dong, Microstructure and Mechanical Properties of Mg-4.0Zn-0.5Ca Alloy, Mater. Lett., 2009, 63, p 557–559

    Article  Google Scholar 

  19. A. Becerra and M. Pekguleryuz, Effects of Lithium, Indium, and Zinc on the Lattice Parameters of Magnesium, J. Mater. Res., 2008, 23, p 3379–3386

    Article  Google Scholar 

  20. T. W. Clyne, G. J. Davies, Comparison Between Experimental Data and Theoretical Predictions Relating to Dependence of Solidification Cracking on Composition. Solidification and casting of metals, edited by Sheffield, UK. 1977, p 275-278

  21. T.W. Clyne and G.J. Davies, The Influence of Composition on Solidification Cracking in Binary Alloy Systems, Br. Foundryman, 1981, 74, p 65–73

    Google Scholar 

  22. P. Gunde, A. Schiffl, and P.J. Uggowitzer, Influence of yttrium additions on hot tearing susceptibility of magnesium-zinc alloys, Mater. Sci. Eng. A, 2010, 527, p 7074–7079

    Article  Google Scholar 

  23. S.S. Li, B. Tang, X.Y. Jin, and D.B. Zeng, An investigation on hot cracking mechanism of Sr addition into Mg-6Al-0.5Mn alloy, J. Mater. Sci., 2012, 47, p 2000–2004

    Article  Google Scholar 

  24. W.C. Zheng, S.S. Li, T. Bin, D.B. Zeng, and X.T. Guo, Effect of rare earths on hot cracking resistant property of Mg-Al alloys, J. Rare Earth., 2006, 24, p 346–351

    Article  Google Scholar 

  25. J. Campbell, Castings, Butterworth-Heinemann, Oxford, 2003

    Google Scholar 

  26. D.G. Eskin and L.Katgerman Suyitno, Mechanical Properties in the Semi-Solid State and Hot Tearing of Aluminium Alloys, Prog. Mater Sci., 2004, 49, p 629–711

    Article  Google Scholar 

  27. J.F. Grandfield, D.G. Eskin, and I.F. Brainbridge, Direct-Chill Casting of Light Alloys, Wiley, New Jersey, 2013, p 173–204

    Book  Google Scholar 

Download references

Acknowledgment

Thanks should be given to National Natural Sciences Foundation of China and General project of scientific research of the Education Department of Liaoning Province for their financial supports through Project No. 51504153, No. 51571145 and Project No. L2015397, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, Y., Wang, F. et al. Effect of Cu Additions on Microstructure, Mechanical Properties and Hot-Tearing Susceptibility of Mg-6Zn-0.6Zr Alloys. J. of Materi Eng and Perform 25, 5530–5539 (2016). https://doi.org/10.1007/s11665-016-2397-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2397-5

Keywords

Navigation