Skip to main content
Log in

Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. Sudha, A.L.E. Terrance, S.K. Albert, and M. Vijayalakshmi, Systematic Study of Formation of Soft and Hard Zones in the Dissimilar Weldments of Cr-Mo Steels, J. Nucl. Mater., 2002, 302, p 193–205

    Article  Google Scholar 

  2. S.K. Albert, T.P.S. Gill, A.K. Tyagi, S.L. Mannan, S.D. Kulkarni, and P. Rodriguez, Soft Zone Formation in Dissimilar Welds Between Two Cr-Mo Steels, Weld. J., 1997, 76(3), p 135s–142s

    Google Scholar 

  3. R. Mittal and B.S. Sidhu, Microstructural and Mechanical Characterization of the Different Zones of the T91/T22 Weldment, Int. J. Surg. Eng. Mater. Technol., 2014, 4(2), p 45–49

    Google Scholar 

  4. C. Sudha, V. Thomas Paul, A.L.E. Terrance, S. Saroja, and M. Vijayalakshmi, Microstructure and Microchemistry of Hard Zone in Dissimilar Weldments of Cr-Mo Steels, Weld. J., 2006, 85(4), p 71s–80s

    Google Scholar 

  5. N. Sae-teaw, B. Poopat, I. Phung-on, and T. Chairuangsri, Analysis of Microstructure in Soft Zone and Precipitation Zone of Dissimilar Cr-Mo Steels Weldment, J. AIJSTPME, 2010, 3(2), p 57–64

    Google Scholar 

  6. M. Regev, S. Berger, and B.Z. Weiss, Investigation of Microstructure Mechanical and Creep Properties of Weldments Between T91 and T22 Steels, Weld. J., 1996, 75(8), p 261s–268s

    Google Scholar 

  7. S.K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, and M. Tabuchi, Variation in the Type IV Cracking Behaviour of a High Cr Steel Weld with Post Weld Heat Treatment, Int. J. Press. Vessels Pip., 2003, 80, p 405–413

    Article  Google Scholar 

  8. T.D. Nguyen, K. Sawada, H. Kushima, and M. Tabuchi, Change of Precipitate Free Zone during Long-Term Creep in 2.25Cr-1Mo Steel, Mater. Sci. Eng. A, 2014, 591, p 130–135

    Article  Google Scholar 

  9. W. Lui, X. Lui, F. Lu, X. Tang, H. Cui, and Y. Gao, Creep Behavior and Microstructure Evaluation of Welded Joint in Dissimilar Modified 9Cr-1Mo Steel, Mater. Sci. Eng. A, 2015, 644, p 337–346

    Article  Google Scholar 

  10. R. Viswanathan and J. Stringer, Failure Mechanisms of High Temperature Components in Power Plants, J. Eng. Mater. Technol., 2000, 122(3), p 246–255

    Article  Google Scholar 

  11. R. Viswanathan, Life Management of High-Temperature Piping and Tubing in Fossil Power Plants, J. Press. Vessel Technol., 2000, 122(3), p 305–316

    Article  Google Scholar 

  12. S. Goyal, K. Laha, K.S. Chandravathi, and K.B.S. Rao, Prediction of Type IV Cracking Behavior of 2.25Cr-1Mo Steel Weld Joint Based on Finite Element Analysis, Trans. Indian Inst. Mat., 2010, 63(2–3), p 461–466

    Article  Google Scholar 

  13. K. Laha, K.S. Chadravathi, K.B.S. Rao, S.L. Mannan, and D.H. Sastry, An Assessment of Creep Deformation and Fracture Behavior of 2.25Cr-1Mo Similar and Dissimilar Weld Joints, Metall. Mater. Trans. A, 2001, 32A, p 115–124

    Article  Google Scholar 

  14. R. Anand, C. Sudha, V.T. Paul, S. Saroja, and M. Vijayalakshmi, Microstructural Changes in Grade 22 Ferritic Steel Clad Successively with Ni-Based and 9Cr Filler Metals, Weld. J., 2010, 89(4), p 65s–74s

    Google Scholar 

  15. Y.Y. You, R.K. Shiue, R.H. Shiue, and C. Chen, The Study of Carbon Migration in Dissimilar Welding of the modified 9Cr-1Mo Steel, J. Mater. Sci. Lett., 2001, 20, p 1429–1432

    Article  Google Scholar 

  16. J.A. Francis, W. Mazur, and H.K.D.H. Bhadeshia, Review Type IV Cracking in Ferritic Power Plant Steels, Mater. Sci. Technol., 2006, 22(12), p 1387–1395

    Article  Google Scholar 

  17. M. Divya, C.R. Das, S.K. Albert, S. Goyal, P. Ganesh, R. Kaul, J. Swaminathan, B.S. Murty, L.M. Kukreja, and A.K. Bhaduri, Influence of Welding Process on Type IV Cracking Behavior of P91 Steel, Mater. Sci. Eng. A, 2014, 613, p 148–158

    Article  Google Scholar 

  18. R. Wu, R. Sandstrom, and F. Seitisleam, Influence of Extra Coarse Grains on the Creep Properties of 9 Percent CrMoV(P91) Steel Weldment, J. Eng. Mater. Technol., 2004, 126, p 87–94

    Article  Google Scholar 

  19. A. Shibli and F. Starr, Some Aspects of Plant and Research Experience in the Use of New High Strength Martensitic Steel P91, Int. J. Press. Vessels Pip., 2007, 84(1–2), p 114–122

    Article  Google Scholar 

  20. Y. Li, H. Hongo, M. Tabuchi, Y. Takahashi, and Y. Monma, Evaluation of Creep Damage in Heat Affected Zone of Thick Welded Joint for Mod. 9Cr-1Mo Steel, Int. J. Press. Vessels Pip., 2009, 86, p 585–592

    Article  Google Scholar 

  21. K. Laha, K.S. Chadravathi, P. Parameswaran, K.B.S. Rao, and S.L. Mannan, Type IV Cracking in Modified 9Cr-1Mo Steel Weld Joint, Metall. Mater. Trans. A, 2007, 38, p 58

    Article  Google Scholar 

  22. S. Goyal, K. Laha, K.S. Chandravathi, P. Parameswaran, and M.D. Mathew, Finite Element Analysis of Type IV Cracking in 2.25Cr-1Mo Steel Weldment based on Micro-Mechanistic Approach, Philos. Mag., 2011, 91(23), p 3128–3154

    Article  Google Scholar 

  23. X. Chai, J.C. Bundy, M.A. Amata, C. Zhang, F. Zhang, S. Chen, S.S. Babu, and S. Kou, Creep Rupture Performance of Welds of P91 Pipe Steel, Weld. J., 2015, 94, p 145s–157s

    Google Scholar 

  24. G. Lou, J. Wu, and Q. Meng, Microstructural Evolution on the T91 Dissimilar Metal Joints During Creep Rupture Tests, J. Mater. Sci. Technol., 2004, 20(4), p 383–386

    Google Scholar 

  25. W. Lin, H.W. Ebert, J.M. Gray, J.T. Hickey, D.J. Kotecki, D.R. Miller, T.A. Siewert J.P. Snyder, and J.L. Warren, Chromium-Molybdenum Steels, Welding Handbook: Materials and Applications Part 2, vol. 4, 8th ed., W.R. Oates, and A.M. Saitta, Ed., AWS, 1998, p 56–73

  26. Requirements for Pressure Vessels Constructed of Carbon and Low Alloy Steels, ASME Sec. VIII Div.1, Part UCS, ASME, 2004, p 156–184

  27. Standard Practice for Microetching Metals and Alloys, E407, ASTM Standards, ASTM, 1999, p 1–21

  28. Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes, SA-213/SA-213M, ASME Sec. II, Part A, ASME, 2004, p 337–348

  29. Specification for Low-Alloy Steel Electrodes and Rods for Gas Shielded Arc Welding, SFA-5.28, ASME Sec. II, Part C, ASME, 2004, p 611–640

  30. Specification for Bare Stainless Steel Welding Electrodes and Rods, SFA-5.9, ASME Sec. II, Part C, ASME, 2004, p 207–232

  31. Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods, SFA-5.14, ASME Sec. II, Part C, ASME, 2004, p 325–344

  32. S. Petchsang, I. Phung-on, H. Terasaki, Y. Komizo, and H. Yamamoto, Investigation of Fracture Location of T22/T91 Dissimilar Welds, J. Key Eng. Mater., 2015, 659, p 355–360

    Article  Google Scholar 

  33. T. Vuherer, M. Dunder, L.J. Milovic, M. Zrilic, and I. Samardzic, Microstructural Investigation of the Heat-Affected Zone of Simulated Welded Joint of P91 Steel, J. Metal., 2013, 52(3), p 317–320

    Google Scholar 

  34. J.C. Lippold, Welding Metallurgy Principles, Welding Metallurgy and Weldability, Wiley, New Jersey, 2015, p 9–83

  35. J.C. Lippold and D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, Wiley, New Jersey, 2005, p 1–357

    Google Scholar 

  36. M.F. Gittos and T.G. Gooch, The Interface Below Stainless Steel and Nickel-Alloy Claddings, Weld. J., 1992, 71, p 461s–472s

    Google Scholar 

  37. J.N. DuPont and C.S. Kusko, Technical Note: Martensite Formation in Austenitic/Ferritic Dissimilar Alloy Welds, Weld. J., 2007, 86(2), p 51-s–54-s

    Google Scholar 

  38. W. Xue, P. Qian-gang, R. Yao-yao, S. Wei, Z. Hui-qiang, and L. Hong, Microstructure and Type IV Cracking Behavior of HAZ in P92 Steel Weldment, Mater. Sci. Eng. A, 2012, 552, p 493–501

    Article  Google Scholar 

  39. M. Yanet and Z. Monica, Microstructure Characterization of Heat Affected Zone in Single Pass Welding in 9Cr-1Mo Steels, Proc. Mater. Sci., 2015, 8, p 904–913

    Article  Google Scholar 

  40. B. Silwal, L. Li, A. Deceuster, and B. Griffiths, Effect of Postweld Heat Treatment on the Toughness of Heat-Affected Zone for Grade 91 Steel, Weld. J., 2013, 92, p 80s–87s

    Google Scholar 

  41. K. Laha, K.S. Chadravathi, K.B.S. Rao, and S.L. Mannan, Hot Tensile Properties of Simulated Heat-Affected Zone Microstructures of 9Cr-1Mo Weldment, Int. J. Press. Vessels Pip., 1995, 62, p 303–311

    Article  Google Scholar 

  42. V. Gaffard, Experimental Study and Modelling of High Temperature Creep Flow and Damage Behavior of 9Cr1Mo-NbV Steel Weldments, Thesis, Ecole Nationale Superieure des Mines (France), 2004.

  43. Y.K. Chung, C.H. Joo, J.J. Park, I.M. Park, and H.J. Kim, Quantification of Creep Cavitation in Welded Joint and Evaluation of Material Characteristics of Simulated Heat-Affected Zone in X 20 CrMoV 12 1 Steel, J. Press. Vessel Technol., 2001, 123, p 112–117

    Article  Google Scholar 

  44. J. Chen, H. Liu, Z. Pan, K. Shi, H. Zhang, and J. Li, Carbide Evolution and Service Life of Simulated Post Weld Heat Treated 2.25Cr-1Mo Steel, Mater. Sci. Eng. A, 2015, 622, p 153–159

    Article  Google Scholar 

  45. V. Gaffard, Experimental Study and Modelling of High Temperature Creep Flow and Damage Behavior of 9Cr1Mo-NbV Steel Weldments, Thesis, Ecole Nationale Superieure des Mines, France, 2004

  46. T. Vlasak, J. Hakl, P. Novak, J. Sochor, and J. Cech, 2013. Creep Strength Decrease of Cast Steel P91 Weldments, Proceedings of 22th International Conference on Metallurgy and Materials (METAL 2013), May 15–17 2013, Brno, Czech Republic, 2013

Download references

Acknowledgments

This study was supported by Asia Energy Engineering Co., Ltd., for the welding material (T22 and T91 steel tubes). The authors would like to thank the Scholarship (Contract No.: NUI-RC01-55-027) of NSTDA-University-Industry Research Collaboration: NUI-RC, MTEC, for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Petchsang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petchsang, S., Phung-on, I. & Poopat, B. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing. J. of Materi Eng and Perform 25, 5424–5439 (2016). https://doi.org/10.1007/s11665-016-2386-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2386-8

Keywords

Navigation