Skip to main content
Log in

Study on the Antifriction and Antiwear Mechanisms of MoO3 Tabular Crystal in TiAl Matrix Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the friction and wear behaviors of TiAl matrix composites with MTC (TMSCT) and TiAl matrix composites with MoO3 powder (TMSCP) are investigated. The results reveal that TMSCT show the excellent tribologcial performance, if compared to TMSCP. The direct contact layers of TMSCP against different counterface balls obtain huge cracks overall, whereas only fine crack is generated in TMSCT against Al2O3 ball, where MTCs are distributed around the crack evenly. The finite element simulations show that only the stress of TMSCT against Al2O3 ball exceeds the yield strength of TMSCT. It reveals that MTCs in TMSCT can reduce the stress for the weak binding force of multilayer structure and make the direct contact layers be more stable by preventing the propagation of crack after the crack being produced, resulting in the excellent antifriction and antiwear properties of TMSCT against different counterface balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Rastkar and B. Shokri, A Multi-Step Process of Oxygen Diffusion to Improve the Wear Performance of a Gamma-Based Titanium Aluminide, Wear, 2008, 264(11–12), p 973–979

    Article  Google Scholar 

  2. G. Das, H. Kestler, H. Clemens, and P. Bartolotta, Sheet Gamma TiAl: Status and Opportunities, JOM, 2004, 56(11), p 42–45

    Article  Google Scholar 

  3. G. Das, P.A. Bartolotta, H. Kestler, and H. Clemens, Gamma Titanium Aluminides, Y.W. Kim, H. Clemens, and A.H. Rosenberger, Ed., The Minerals, Metals & Materials Society, Warrendale, PA, 2003, p 635

  4. T. Tetsui and S. Ono, Endurance and Composition and Microstructure Effects on Endurance of TiAl used in Turbochargers, Intermetallics, 1999, 7(6), p 689–697

    Article  Google Scholar 

  5. K. Gebauer, Performance, Tolerance and Cost of TiAl Passenger Car Valves, Intermetallics, 2006, 14(4), p 355–360

    Article  Google Scholar 

  6. Z.S. Xu, L. Chen, X.L. Shi, Q.X. Zhang, A.M.M. Ibrahim, W.Z. Zhai, J. Yao, Q.S. Zhu, and Y.C. Xiao, Formation of Friction Layers in Graphene-Reinforced TiAl Matrix Self-lubricating Composites, Tribol. Trans., 2015, 58(4), p 668–678

    Article  Google Scholar 

  7. A. Rastkar, A. Bloyce, and T. Bell, Sliding Wear Behaviour of Two gamma-Based Titanium Aluminides, Wear, 2000, 240(1–2), p 19–26

    Article  Google Scholar 

  8. C. Li, J. Xia, and H. Dong, Sliding Wear of TiAl Intermetallics Against Steel and Ceramics of Al2O3, Si3N4 and WC/Co, Wear, 2006, 261(5–6), p 693–701

    Article  Google Scholar 

  9. H. Lee, N. Lee, Y. Seo, J. Eom, and S.W. Lee, Comparison of Frictional Forces on Graphene and Graphite, Nanotechnology, 2009, 20, p 5701–5706

    Google Scholar 

  10. T. Filleter, J.L. McChesney, A. Bostwick, E. Rotenberg, K.V. Emtsev, Th. Seyller, K. Horn, and R. Bennewitz, Friction and Dissipation in Epitaxial Graphene Films, Phys. Rev. Lett., 2009, 102, p 6102–6105

    Article  Google Scholar 

  11. S. Mahathanabodee, T. Palathai, S. Raadnui, R. Tongsri, and N. Sombatsompop, Dry Sliding Wear Behavior of SS316L Composites Containing h-BN and MoS2 Solid Lubricants, Wear, 2014, 316(1-2), p 37–48

    Article  Google Scholar 

  12. X.M. Fan, X.W. Yin, S.S. He, L.T. Zhang, and L.F. Cheng, Friction and Wear Behaviors of C/C-SiC Composites Containing Ti3SiC2, Wear, 2012, 274–275(27), p 188–195

    Article  Google Scholar 

  13. Y.Z. Lyu, Y. Zhu, and U. Olofsson, Wear Between Wheel and Rail: A Pin-on-Disc Study of Environmental Conditions and Iron Oxides, Wear, 2015, 328–329, p 277–285

    Article  Google Scholar 

  14. D.F. Lu and K. Chen, Preparation of SiC Tabular Crystal by Grinding, J. South China Univ. Technol., 1996, 24, p 16–22

    Google Scholar 

  15. G. Eranna, B.C. Joshi, D.P. Runthala, and R.P. Gupta, Oxide Materials for Development of Integrated Gas Sensors-A Comprehensive Review, Crit. Rev. Solid State Mater. Sci., 2004, 29(3), p 111–188

    Article  Google Scholar 

  16. L. Dongsoo, S. Dong-jun, J. Inhwa, F. Xiang, R. Dong, O. Seokjoon, and H. Hyunsan, Resistance Switching of Copper Doped MoOx Films for Nonvolatile Memory Applications, Appl. Phys. Lett., 2007, 90(12), p 104–122

    Google Scholar 

  17. H. Chao-Sheng, C. Chih-Chieh, H. Hung-Tai, P. Chia-Hsiang, and H. Wen-Chia, Electrochromic Properties of Nanocrystalline MoO3 Thin Films, Thin Solid Films, 2008, 516(15), p 4839–4844

    Article  Google Scholar 

  18. F. Wang and W. Ueda, High Catalytic Efficiency of Nanostructured Molybdenum Trioxide in the Benzylation of Arenes and an Investigation of the Reaction Mechanism, Chem. Eur. J., 2009, 15(3), p 742–753

    Article  Google Scholar 

  19. J.S. Chen, Y.L. Cheah, S. Madhavi, and X.W. Lou, Fast Synthesis of α-MoO3 Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities, J. Phys. Chem. C, 2010, 114(18), p 8675–8678

    Article  Google Scholar 

  20. J.N. Yao, K. Hashimoto, and A. Fujishima, Photochromism Induced in an Electrolytically Pretreated MoO3 Thin Film by Visible Light, Nature, 1992, 355, p 624–626

    Article  Google Scholar 

  21. T.S. Sian and G.B. Reddy, Schematic Diagram of the Activated Reactive Evaporation (ARE) Setup Used for Depositing Stoichiometric Amorphous MoO3 Films, J. Appl. Phys., 2005, 98, p 26–104

    Article  Google Scholar 

  22. M.B. Rahmania, S.H. Keshmiri, J. Yua, A.Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y.X. Li, W. Wlodarski, and K. Kalantar-zadeh, Gas Sensing Properties of Thermally Evaporated Lamellar MoO3, Sens. Actuators, B, 2010, 145(1), p 13–19

    Article  Google Scholar 

  23. D.P. Debecker, M. Stoyanova, U.W.E. Rodemerck, and E.M. Gaigneaux, Preparation of MoO3/SiO2-Al2O3 Metathesis Catalysts Via Wet Impregnation with Different Mo Precursors, J. Mol. Catal. A: Chem., 2011, 340(1), p 65–76

    Article  Google Scholar 

  24. Y.X. Sun, J. Wang, B. Zhao, R. Cai, R. Ran, and Z.P. Shao, Binder-free α-MoO3 Nanobelt Electrode for Lithium-Ion Batteries Utilizing van der Waals Forces for Film Formation and Connection with Current Collector, J. Mater. Chem. A, 2013, 1, p 4736–4746

    Article  Google Scholar 

  25. M. Chhowalla and G.A. Maratunga, Thin Films Of Fullerene-Like MoS2 Nanoparticles with Ultra-Low Friction and Wear, Nature, 2000, 407(6801), p 164–167

    Article  Google Scholar 

  26. H.C. Zeng, Vapour Phase Growth of Orthorhombic Molybdenum Trioxide Crystals at Normal Pressure of Purified Air, J. Cryst. Growth, 1998, 186(3), p 393–402

    Article  Google Scholar 

  27. S. Balakumar and H.C. Zeng, Growth Modes in Vapour-Phase Prepared Orthorhombic Molybdenum Trioxide Crystals, J. Cryst. Growth, 1999, 197(1–2), p 186–194

    Article  Google Scholar 

  28. S.A. Alidokht, A. Abdollah-zadeh, and H. Assadi, Effect of Applied Load on the Dry Sliding Wear Behaviour and the Subsurface Deformation on Hybrid Metal Matrix Composite, Wear, 2013, 305(1), p 291–298

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51275370); the authors also wish to gratefully thank the Material Research and Testing Center of Wuhan University of Technology for their assistance. Authors were grateful to M.J. Yang, S.L. Zhao and W.T. Zhu in Material Research and Test Center of WUT for their kind help with EPMA and FESEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Shi, X., Yang, K. et al. Study on the Antifriction and Antiwear Mechanisms of MoO3 Tabular Crystal in TiAl Matrix Composites. J. of Materi Eng and Perform 25, 5374–5381 (2016). https://doi.org/10.1007/s11665-016-2380-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2380-1

Keywords

Navigation