Skip to main content
Log in

Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ni/TiC bilayered coatings are deposited on hot-working steel (H11) by plasma-assisted chemical vapor deposition and electroless technique. The TiC layer is deposited at 490 °C using a gas mixture of TiCl4, CH4, H2, and Ar, and a dense nanostructured TiC coating with minimum excessive carbon phases and low chlorine concentration is produced. The effects of the Ni intermediate layer on the microstructure, tribology, and corrosion behavior of the nanostructured TiC coating are investigated. The friction coefficient of the Ni/TiC bilayered coating (Ni thickness = 4 µm) at 500 cycles is much smaller than that of the coating without the Ni intermediate layer. The smallest friction coefficient is about 0.2, and the hardness values of the Ni/TiC bilayered samples with three different Ni layer thicknesses of 2, 4, and 6 µm are 2534, 3070, and 2008 Hv, respectively. The wear mechanism of the Ni/TiC bilayered coatings is abrasive induced by plastic deformation and fatigue during the sliding process. The smaller groove width on the 4-µm electroless nickel-Ni3P/TiC bilayered coating correlates with the larger H/E ratio and the 4-µm nickel/TiC bilayered sample shows the better wear resistance. The polarization resistance of the 6-µm electroless nickel-Ni3P/TiC coating in 0.05 M NaCl and 0.5 M H2SO4 increases by about 8 and 15 times, respectively. The Ni intermediate layer increases the toughness of the coating and adhesion between the hard coating and steel substrate thereby enhancing the tribological properties and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.R. Katipelli, A. Agarwal, and N.B. Dahotre, Laser Surface Engineered TiC Coating on 6061 Al Alloy: Microstructure and Wear, Appl. Surf. Sci., 2000, 153(2), p 65–78

    Article  Google Scholar 

  2. T.-H. Fang, S.R. Jian, and D.S. Chuu, Nanomechanical Properties of TiC, TiN and TiCN Thin Films Using Scanning Probe Microscopy and Nanoindentation, Appl. Surf. Sci., 2004, 22(1–4), p 365–372

    Article  Google Scholar 

  3. D.-J. Kim, Y.-R. Cho, M.-J. Lee, J.-M. Hong, Y.-K. Kim, and K.H. Lee, Properties of TiN–TiC Multilayer Coatings Using Plasma-Assisted Chemical Vapor Deposition, Surf. Coat. Technol., 1999, 116–119(1), p 906–910

    Article  Google Scholar 

  4. H. Liepack, K. Bartsch, K. Brückner, and A. Leonhardt, Surf. Coat. Technol., 2004, 183(1), p 69–73

    Article  Google Scholar 

  5. A.A. El Mel, B. Angleraud, E. Gautron, A. Granier, and P.Y. Tessier, Microstructure and Composition of TiC/a-C: H Nanocomposite Thin Films Deposited by a Hybrid IPVD/PECVD Process, Surf. Coat. Technol., 2010, 204(12), p 1880–1883

    Article  Google Scholar 

  6. Y. Li, P. Bai, Y. Wang, J. Hu, and Z. Guo, Effect of TiC Content on Ni/TiC Composites by Direct Laser Fabrication, Mater. Des., 2009, 30(4), p 1409–1412

    Article  Google Scholar 

  7. A. Leonhardt, K. Bartsch, and I. Endler, Preparation and Characterization of Hard Mono- and Multilayer Plasma-Assisted Chemically Vapour Deposited Coatings, Surf. Coat. Technol., 1995, 76–77(1), p 225–230

    Article  Google Scholar 

  8. A. Mani, P. Aubert, F. Mercier, H. Khodja, C. Berthier, and P. Houdy, Effects of Residual Stress on the Mechanical and Structural Properties of TiC Thin Films Grown by RF Sputtering, Surf. Coat. Technol., 2005, 194(2), p 190–195

    Article  Google Scholar 

  9. I. Dahan, A. Admon, N. Frage, J. Sariel, M.P. Dariel, and J.J. Moore, The Development of a Functionally Graded TiC–Ti Multilayer Hard Coating, Surf. Coat. Technol., 2001, 137(2), p 111–115

    Article  Google Scholar 

  10. D. Kim, J. Kang, A. Nasonova, K. Kim, and S. Choi, Numerical Simulation on Silane Plasma Chemistry in Pulsed Plasma Process to Prepare a-Si: H Thin Films, Korean J. Chem. Eng., 2007, 24(1), p 154–164

    Article  Google Scholar 

  11. J. Tang, L. Feng, and J.S. Zabinski, The Effects of Metal Interlayer Insertion on the Friction, Wear and Adhesion of TiC Coatings, Surf. Coat. Technol., 1998, 99(3), p 242–247

    Article  Google Scholar 

  12. W. Wei, Q. Shi-qiang, and Z. Xi-ying, Microstructure and Properties of TiN/Ni Composite Coating Prepared by Plasma Transferred Arc Scanning Process, Trans. Nonferrous Met. Soc. China., 2009, 19(5), p 1180–1184

    Article  Google Scholar 

  13. V.K. William Grips, V. EzhilSelvi, Harish C. Barshilia, and K.S. Rajam, Effect of Electroless Nickel Interlayer on the Electrochemical Behavior of Single Layer CrN, TiN, TiAlN Coatings and Nanolayered TiAlN/CrN Multilayer Coatings Prepared by Reactive DC Magnetron Sputtering, Electrochim. Acta, 2006, 51(17), p 3461–3468

    Article  Google Scholar 

  14. A. Ciubotariu, L. Benea, M. Varsanyi, and V. Dragan, Electrochemical Impedance Spectroscopy and Corrosion Behaviour of Al2O3–Ni Nano Composite Coatings, Electrochim. Acta, 2008, 53(13), p 4557–4563

    Article  Google Scholar 

  15. Sh Alirezaei, S.M. Monirvaghefi, M. Salehi, and A. Saatchi, Effect of Alumina Content on Surface Morphology and Hardness of Ni–p–Al2O3(α) Electroless Composite Coatings, Surf. Coat. Technol., 2004, 184(22), p 170–175

    Article  Google Scholar 

  16. I. Apachitei and J. Duszczyk, Autocatalytic Nickel Coatings on Aluminium with Improved Abrasive Wear Resistance, Surf. Coat. Technol., 2000, 132(1), p 89–98

    Article  Google Scholar 

  17. I. Apachitei, F.D. Tichelaar, J. Duszczyk, and L. Katgerman, Solid-State Reactions in Low-Phosphorus Autocatalytic NiP–SiC Coatings, Surf. Coat. Technol., 2001, 148(2), p 284–295

    Article  Google Scholar 

  18. D. Galvan, Y.T. Pei, and JThM De Hosson, TEM Characterization of a Cr/Ti/TiC Graded Interlayer for Magnetron-Sputtered TiC/a-C: H Nanocomposite Coatings, Acta Mater., 2005, 53(14), p 3925–3934

    Article  Google Scholar 

  19. N. Kumar, P.K. Ajikumar, S. Dash, M. Kamruddin, A.K. Tyagi, and B. Raj, Ultra-Low Friction of TiC/a-C Composite Coatings, Tribol. Int., 2011, 44(10), p 1251–1256

    Article  Google Scholar 

  20. A.A. El Mel, B. Angleraud, E. Gautron, A. Granier, and P.Y. Tessier, XPS Study of the Surface Composition Modification of nc-TiC/C Nanocomposite Films Under In Situ Argon Ion Bombardment, Thin Solid Films, 2011, 519, p 3982–3985

    Article  Google Scholar 

  21. Y. Wang, X. Zhang, X. Wu, H. Zhang, and X. Zhang, Compositional, Structural and Mechanical Characteristics of nc-TiC/a-C: H Nanocomposite Films, Appl. Surf. Sci., 2008, 255, p 1801–1805

    Article  Google Scholar 

  22. W. Gulbiński, S. Mathur, H. Shenb, T. Suszkoa, A. Gilewicza, and B. Warcholiński, Evaluation of Phase, Composition, Microstructure and Properties in TiC/a-C: H Thin Films Deposited by Magnetron Sputtering, Appl. Surf. Sci., 2005, 239, p 302

    Article  Google Scholar 

  23. H. Ashassi-Sorkhabi and S.H. Rafizadeh, Effect of Coating Time and Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni–P Alloy Deposits, Surf. Coat. Technol., 2004, 176(3), p 318–326

    Article  Google Scholar 

  24. M. Sakurai, T. Toihara, M. Wang, W. Kurosaka, and S. Miyake, Surface Morphology and Mechanical Properties of Nanoscale TiAlN/SiNx Multilayer Coating Deposited by Reactive Magnetron Sputtering, Surf. Coat. Technol., 2008, 203(1), p 171–179

    Article  Google Scholar 

  25. E. Meyer and E. Gnecco, Ed., Fundamentals of Friction and Wear on the Nanoscale, Springer, Berlin, 2007

    Google Scholar 

  26. A. Shanaghi, A.R. SabourRouhaghdam, Sh Ahangarani, and P.K. Chu, Effect of Plasma CVD Operating Temperature on Nanomechanical Properties of TiC Nanostructured Coating Investigated by Atomic Force Microscopy, Mater. Res. Bull., 2012, 47(9), p 2200–2205

    Article  Google Scholar 

  27. A.C. Fernandes, P. Carvalho, F. Vaz, S. Lanceros-Méndez, A.V. Machado, N.M.G. Parreira, J.E. Pierson, and N. Martin, Property Change in Multifunctional TiCxOy Thin Films: Effect of the O/Ti Ratio, Thin Solid Films, 2006, 515(3), p 866–871

    Article  Google Scholar 

  28. S.K. Ghosh, P.K. Limaye, S. Bhattacharya, N.L. Soni, and A.K. Grover, Effect of Ni Sublayer Thickness on Sliding Wear Characteristics of Electrodeposited Ni/Cu Multilayer Coatings, Surf. Coat. Technol., 2007, 201(16), p 7441–7448

    Article  Google Scholar 

  29. P. Sahoo and S. Kalyan, Das, Tribology of Electroless Nickel Coatings—A Review, Mater. Des., 2011, 32(4), p 1760–1775

    Article  Google Scholar 

  30. F. Vacandio, Y. Massiani, M. Eyraud, S. Rossi, and L. Fedrizzi, Influence of Various Nickel Under-Layers on the Corrosion Behaviour of AlN Films Deposited by Reactive Sputtering, Surf. Coat. Technol., 2001, 137, p 284–292

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Iranian Nanotechnology Initiative Council. The work was financially supported by Malayer University Research Grant and Hong Kong Research Grants Council (RGC) General Research Funds (GRF) No. CityU 11301215 and City University of Hong Kong Applied Research Grant 9667122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shanaghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanaghi, A., Chu, P.K. Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD. J. of Materi Eng and Perform 25, 4796–4804 (2016). https://doi.org/10.1007/s11665-016-2378-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2378-8

Keywords

Navigation